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Summary of main observation and conclusion  A copper catalyzed enantioselective [3+2] annulation of donor-acceptor cyclopropanes with cyclic ke-
tones has been developed, providing a concise protocol to enantioenriched 1-oxaspiro[4.5]decanes in up to 98% yield with up to >99/1 dr and up to 92% 
ee. In addition, this method also provides a facile access to the enantioselective desymmetrisation of various 4-substituted cyclohexanones. The resulting 
products were easily converted to the core structures of two natural products Heliespirones A and halogenated sesquiterpene isolated from L. saitoi. 

 

Background and Originality Content 

1-Oxaspiro[4.5]decane skeleton bearing a stereogenic spiro 
carbon usually appears as core structure in a good number of 
biologically active natural products (Figure 1).

[1]
 For examples, 

Cyclopamine was found as an inhibitor of Hh signaling, and the 
inhibition of Hh signaling has been considered as a novel route to 
anticancer therapies;

[1d]
 Heliespirones A showed potential alle-

lopathic activity in the coleoptiles bioassay;
[1f]

 Theaspirone and 
Dactyloxene-B are important natural perfume and widely applied 
in flavoring industry.

[1a,1c]
 Owing to its important bioactivity and 

unique oxa-spirocyclic structure, 1-oxaspiro[4.5]decane attracts 
continuing interest to organic synthetic chemists. Aiming to this 
interesting skeleton, various synthetic strategies have been de-
veloped, such as intramolecular oxygen-nucleophilic cyclization of 
alcohol,

[2]
 1,5-transfer/cyclization,

[3]
 [3+2] cycloaddition of spiro 

oxiran with olefin
[4]

 and so on. However, for a long time, enanti-
oselective construction of optically active 1-oxaspiro[4.5]decanes 
has been rare.

[5]
 In 2012, Tu and co-workers developed an elegant 

organocatalytic asymmetric 1,5-transfer/cyclization reaction, 
leading to an efficient approach to chiral spiroether compounds in  

 

Figure 1  Natural products containing 1-oxaspiro[4.5]decane skeleton. 

62%—87% yields, up to 94/6 dr and up to 96% ee (Scheme 1a).
[5a]

 
In 2006, Yadav and co-workers demonstrated that Lewis acid cat-
alyzed [3+2] annulation of silylmethylcyclopropanes with cyclo-
hexanone could provide a facile access to the racemic 1-oxa-
spiro[4.5]decane (Scheme 1a).

[6a]
 In 2012, Waser and co-workers 

reported a catalytic enantiospecific [3+2] annulation of aminocy-
clopropanes with cyclohexanone, where enantioenriched cyclo- 

Scheme 1 Enantioselective construction of optically active 1-oxaspiro[4.5]-

decanes 
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propanes were converted to enantioenriched 1-oxaspiro[4.5]dec-
anes in high efficiency (Scheme 1a).

[7]
 Donor-acceptor (D-A) cyclo-

propanes are very useful organic synthons, which have been widely 
employed in various asymmetric [3+n] annulation reactions for the 
rapid construction of chiral cyclic compounds.

[8-10]
 However, the 

highly enantioselective reaction of D-A cyclopropanes with ke-
tones has not been realized to the best of our knowledge. Herein, 
we developed a chiral copper catalyzed asymmetric [3+2] annula-
tion of D-A cyclopropane with cyclic ketones, delivering a wide 
range of optically active 1-oxaspiro[4.5]decanes in high yields with 
good to excellent enantioselectivity (Scheme 1b). Meanwhile, this 
method also provided an efficient approach to the enantioselec-
tive desymmetrisation of 4-substituted cyclohexanones.

[11]
 

Results and Discussion 

Initially, dimethyl 2-(4-methoxyphenyl)cyclopropane-1,1-dicar-
boxylate (1) was reacted with cyclohexanone 2a in the presence 
of catalytic amount of Cu(OTf)2 as metal salt and L1 as chiral lig-
and in DCM (dichloromethane) at room temperature. Only 38% 
yield of the desired 1-oxaspiro[4.5]decane product was obtained 
with 44% ee, accompanied with the decomposition of the cyclo-
propane methyl diester substrate in the current catalyst system 
(Table 1, entry 1). When a more stable 1,1-cyclopropane ethyl 
diester was employed as starting material, both the yield and the 
enantioselectivity were improved (Table 1, entry 2). Thus, cyclo-
propane bearing two benzyl ester groups was used, which was 
found to be more suitable in the asymmetric [3+2] annulation 
reaction with cyclohexanone, affording the 1-oxaspiro[4.5]decane 
3a in 83% yield with 48% ee (Table 1, entry 3). Lowering the reac-
tion temperature could dramatically increase the enantioselectiv-
ity of this reaction. When the reaction was carried out at 0 

o
C, 70% 

ee could be obtained and 93% yield was achieved by prolonging 
the reaction time (Table 1, entry 4). By employing SaBOX lig-
and

[12-13]
 L2 containing two bulky side arms, the enantioselectivity 

was further improved to 76% ee (Table 1, entry 5). Continuing to 
lower the reaction temperature to ‒20 

o
C could slightly increase 

the ee value (Table 1, entry 6). When two methyl groups were 
installed on the indanyl skeletons of L2 to furnish L3,

[14]
 a dra-

matic increase of the enantioselectivity of this [3+2] annulation 
was observed, leading to the 1-oxaspiro[4.5]decane 3a in 95% 
yield with 90% ee (Table 1, entry 7). In addition, both the yield 

Table 1  Optimization of reaction conditions 

 

Entrya R T/oC Ligand Yieldb/% eec/% 

1 Me r.t. L1 38 44 

2 Et r.t. L1 52 49 

3 Bn r.t. L1 83 48 

4 Bn 0 L1 93 70 

5 Bn 0 L2 90 76 

6 Bn -20 L2 91 83 

7 Bn -20 L3 95 90 

8 d Bn -20 L3 98 91 
a Conditions: 1 (0.2 mmol), 2a (0.4 mmol), Cu(OTf)2 (0.02 mmol), ligand 

(0.024 mmol), [1] = 0.1 M in DCM, 4 Å MS (100 mg). b Isolated yields. c De-

termined by chiral HPLC analysis. d DCM/THF = 9/1.  

and the enantioselectivity could be further improved by employ-
ing a mix-solvent system with the ratio of DCM to THF (tetrahy-
drofuran) as 9 : 1, which afforded 3a in 98% yield with 91% ee 
(Table 1, entry 8).  

With the optimized reaction conditions in hand (Table 1, entry 
8), we next evaluated the reaction scope of this catalyst system. 
As shown in Table 2, the reaction proceeded smoothly with a 
range of mono-substituted cyclohexanons by using Cu(OTf)2/L3 as 
catalyst, including various groups such as –Me, –Et, –

i
Pr, –

t
Bu and 

t-amyl, leading to the desymmetrization products 3b–f in 
83%—97% yields, up to > 99/1 dr and 91%—92% ee (Table 2, 
entries 2—6). The current catalytic system is also compatible with 
4,4-disubstituted cyclohexanone (2g) and 4-methylene cyclohex-
anone (2h), furnishing the corresponding products 3g‒h in 
71%—95% yields with 85%—88% ee (Table 2, entries 7—8). In 
addition, both cyclopentanone (2i) and cycloheptanone (2j) were 
compatible, giving the corresponding products 3i and 3j in 
53%—92% yields with 37%—65% ee, respectively(entries 9—10). 

Table 2  Substrate scope of cyclic ketones 

 

Entrya R1, R2 3 Yieldb/% drc eed/% 

1 H, H 3a 98 — 91 

2 Me, H 3b 88 86/14 92 

3 Et, H 3c 97 88/12 92 

4 nPr, H 3d 90 95/5 92 

5 iPr, H 3e 90 > 99/1 92 

6 t-amyl, H 3f 83 > 99/1 91 

7 Me, Me 3g 95 — 85 

8 (2h)  3h 71 — 88 

9  (2i) 3i 92 — 65 

10  (2j) 3j  53 — 37 

a Conditions: 1a (0.2 mmol), 2 (0.4 mmol), Cu(OTf)2 (0.02 mmol), L3 (0.024 

mmol), [1a] = 0.1 M in DCM/THF, 4 Å MS (100 mg). b Isolated yields. c De-

termined by crude 1H NMR. d Determined by chiral HPLC analysis. 

Further investigation on the substrate scope of cyclopropanes 
was summarized in Table 3. We were pleased to find that cyclo-
propanes 1b and 1c bearing cinnamyl or α-methyl cinnamyl sub-
stituents were suitable reaction candidates, and provided the 
corresponding products 3k and 3l in 82%—90% yields with 
80%—86% ee (Table 3, entries 1—2). Cyclopropanes containing 
heterocyclic substituents such as thienyl and indolyl groups were 
also tolerated in the current chiral copper catalyst system, deliv-
ering various 1-oxaspiro[4.5]decanes 3m‒n in up to 98% yield 
with up to 87% ee (Table 3, entries 3—4).  

Since the resulting 1-oxaspiro[4.5]decanes were liquid, in or-
der to determine the absolute configuration of the product, 3f 
was transformed to the solid product 3f’ by an ester aminolysis 
reaction with 4-bromoaniline in a basic condition. The absolute 
configuration of 3f’ was determined by X-Ray diffraction analysis 
as 2S, 5S, 8R, as shown in Scheme 2.

[15]
  

The current method provided a facile access to important 
chiral oxaspiro[4.5]decane scaffolds. By simple functional group 
transformations, the core structures of two natural products were 
synthesized as shown in Scheme 3. Firstly, the cinnamyl group of  
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Table 3  Substrate scope of cyclopropane 

 

Entrya R3 3 Yieldb/% eec/% 

1 PhCH=CH 3k 90 86 

2 PhCH=CMe 3l 82 80 

3 2-thienyl 3m 87 87 

4 N-Boc-2-indolyl 3n 98 75 
a Conditions: 1 (0.2 mmol), 2a (0.4 mmol), Cu(OTf)2 (0.02 mmol), L3 (0.024 

mmol), [1] = 0.1 M in DCM/THF, 4 Å MS (100 mg). b Isolated yields. c De-

termined by chiral HPLC analysis. 

Scheme 2  Determination the absolute configuration of 3f 

 

3k was oxidized to formyl group to afford 4k in 85% yield by two 
steps. Introducing an olefin to 4k by a Wittig reaction, 5k was 
obtained in 60% yield. Then the decarboxylation was conducted 
in order to remove one of the ester group with a yield of 70% to 
give 6k, and the remaining ester group of 6k was reduced to hy-
droxyl group, followed by being treated with MsCl to furnish 7k in 
90% yield by two steps. At last, after elimination of the MsO- 
group, 8k was yielded in 32% yield to produce the core structure 
of a halogenated sesquiterpene isolated from L. saitoi

[1e]
 (Scheme 

3a). Meanwhile, 3l was easily transformed to 4l by decarboxyla-
tion reaction with LiCl in DMSO, and 4l was then converted to 5l 
by an ozonization reaction. The carbonyl group of 5l was able to 
transform to tertiary alcohol via Grignard reaction to give 6l as 
the core structure of Heliespirones A

[1f]
 (Scheme 3b).  

A catalytic cycle was proposed in Figure 2. The catalysis would 
be initiated by the chiral copper complex A generated via coordi-
nation of the copper salt with chiral ligand followed by the activa-
tion of cyclopropane 1 to form species B. Then, an O-nucleophilic 
attack of ketone 2 to species B would generate species C followed 
by the ring closure to deliver species D. Finally, species D give 
product 3 and release the copper catalyst A, thus accomplishing 
the catalytic cycle.  

Based on our previous study on the crystal structure of L2/ 
CuBr2 complex,

[9g]
 an enantio-induction model was proposed to 

explain the observed enantioselectivity. As shown in Figure 3, the 
approach of the Si face of ketone to the transient (R)-cyclopro-
pane (left) should be more favored, which suffers less steric inter-
actions with the ligand indanyl substituent. This induction model  

Scheme 3  Transformations of products 3i and 3j 

 

 
Figure 2  Proposed catalytic cycle 

 

Figure 3  Proposed stereoinduction model. 



 

 
1632 www.cjc.wiley-vch.de ©  2020 SIOC, CAS, Shanghai, & WILEY-VCH GmbH Chin. J. Chem. 2020, 38, 1629－1634 

 

Concise Report Zheng et al. 

is in accordance with the experimental results as listed in Tables 2 
and 3. 

Conclusions 

In summary, we have developed an enantioselective catalytic 
asymmetric [3+2] annulation of D-A cyclopropanes with cyclic 
ketones. In the presence of copper(II)/SaBOX complex as catalyst, 
various cyclopropanes, as well as many different cyclohexanones 
with substituents at 4-position reacted smoothly, providing a fac-
ile approach to the construction of optically active 1-oxaspiro-
[4.5]decanes in up to 98% yield with up to 99/1 dr and up to 92% 
ee. Furthermore, this method also furnished an efficient access to 
the enantioselective desymmetrisation of 4-substituted cyclo-
hexanones. In the application of this method, the core structures 
of Heliespirones A and a halogenated sesquiterpene isolated from 
L. saitoi were synthesized by simple functional group transfor-
mations. Further application of the useful method to the con-
struction of biologically active molecules is ongoing in our labora-
tory. 

Experimental 

Typical procedure for the [3+2] annulation (3a as an example): 
A mixture of Cu(OTf)2 (0.02 mmol), L3 (0.024 mmol) and 100 mg 4 
Å molecular sieve in the mixture of DCM (1.8 mL) and THF (0.2 mL) 
was stirred at room temperature for 2 h under the atmosphere of 
nitrogen. Substrate 1a (0.2 mmol) was added, and the mixture 
was stirred for 10 min at room temperature. Then the reaction 
system was cooled to ‒20 

o
C and substrate 2a (0.4 mmol) was 

added at ‒20 
o
C. After the reaction was completed (monitored by 

TLC), the reaction was filtered through a glass funnel with thin 
layer (30 mm) of silica gel (100—200 mesh) and eluted with DCM. 
The filtrate was concentrated under reduced pressure, purified by 
flash chromatography (petroleum ether/ethyl acetate = 50/1) to 
afford the product 3a as a colorless oil, in 98% yield with 91% ee 
(Chiralpak AD-H, n-hexane/iPrOH = 90/10, 0.7 mL/min, λ = 280 nm: 
tR(minor) = 14.3 min, tR(major) = 16.9 min); [α]D

27
= ‒4.1

o
 (c = 1.0, 

CHCl3). 
1
H NMR (300 MHz, CDCl3) δ: 7.32—7.22 (m, 12H), 6.83 (d, 

J = 8.1 Hz, 2H), 5.24—5.05 (m, 5H), 3.76 (s, 3H), 2.92 (dd, J = 13.7, 
7.6 Hz, 1H), 2.55 (dd, J = 13.7, 8.7 Hz, 1H), 1.88—1.53 (m, 9H), 
1.12—1.08 (m, 1H); 

13
C NMR (75 MHz, CDCl3) δ: 169.2, 169.1, 

158.7, 135.2, 135.1, 134.8, 128.5, 128.4, 128.2, 128.0, 127.1, 
113.5, 85.6, 76.9, 67.5, 67.1, 67.0, 55.1, 41.2, 33.1, 31.4, 25.3, 
22.3, 22.1. IR (neat) ν: 3033, 2932, 2852, 1730, 1612, 1586, 1513, 
1454, 1372, 1286, 1243, 1171, 1066, 1035, 984, 910, 827, 735, 
696 cm

‒1
; HRMS-ESI [M+NH4]

+
: Calculated for C32H38NO6

+
, 

532.2694; Found: 532.2700. 

Supporting Information  

Experimental procedures and characterization data for all 
products and crystallographic data are included. The supporting 
information for this article is available on the WWW under 
https://doi.org/10.1002/cjoc.202000277. 
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