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ABSTRACT: In the presence of 4 Å MS, both all-alkene [2 + 2
+ 2] and [2 + 2] cyclizations of dimethyl methylenemalonate
(DMM) with N-sulfonyl enamides were selectively achieved
under In(OTf)3 and Cu(OTf)2 catalysis, respectively. In(OTf)3-
catalyzed [4 + 2] cyclization of the sulfonylamidocyclobutanes
with another molecule of DMM or other electron-deficient
alkenes was also reported.

Cycloadditions, as exemplified by the venerable Diels−
Alder reaction, are among the most widely used and

efficient methods for construction of cyclic compounds from
simple π-systems in organic synthesis.1 Since the pioneering
discovery of thermal and transition-metal-catalyzed cyclo-
trimerization of acetylene to benzene,2 transition-metal-
catalyzed [2 + 2 + 2] cycloaddition reactions have been
extensively investigated for the preparation of structurally
diverse carbo- and heterocyclic six-membered rings.3 Similar to
the popularity of alkynes in transition-metal-catalyzed [2 + 2 +
2] cycloadditions, alkenes are also widely employed π-
components in these cyclization processes.3g More impor-
tantly, the use of alkenes could deliver the cycloadducts with a
high degree of stereochemical complexity,4,5 whereas alkyne
cyclotrimerization typically generates planar benzenoids.
Notably, all-alkene [2 + 2 + 2] cycloaddition could
theoretically give cyclohexanes with six continuous stereo-
centers, which are very attractive yet challenging.5 In sharp
contrast to olefin linear trimerization,6 reports on all-alkene [2
+ 2 + 2] cycloadditions are relatively rare, and very few
examples using ene−allenes5 or conformationally restricted
bis-alkenes7 have been disclosed.
Inspired by our recent discovery of a copper-catalyzed

formal [2 + 2 + 2] cycloaddition reaction of indoles with two
molecules of dimethyl methylenemalonate (DMM),4f we
wondered if all-alkene [2 + 2 + 2] cycloaddition reaction of
DMM with other electron-rich alkenes that replace indoles,
such as enamides, can be realized (a, Scheme 1). This seems to
be challenging since under Lewis acid catalysis (1) DMM has
been found to readily undergo formal [2 + 2] cycloaddition
reaction with N-vinyl phthalimide8,9 and (2) the generated
aminocyclobutane further reacted with electron-rich alkenes
such as enol ethers to produce the cyclohexane derivatives (b,
Scheme 1).10 Surprisingly, we recently found that, by the use
of N-sulfonyl enamides, both all-alkene [2 + 2 + 2] and [2 + 2]

cycloaddition reactions of DMM could be selectively
controlled by different Lewis acid catalysts. The resulting
donor−acceptor (D−A) cyclobutanes readily react with
another molecule of DMM to generate the cyclohexanes (c,
Scheme 1), indicative of the rare nucleophilicity of strained
D−A cycloalkanes.11 Taking advantage of the subtle reactivity
difference, three-component [2 + 2 + 2] annulation of sulfonyl
enamides with DMM and less activated alkenes was realized.
Initially, the cyclic enamide N-tosyl-2,3-dihydropyrrole (1a)

was attempted to react with DMM at −20 °C in dichloro-
methane in the presence of 10 mol % of Cu(OTf)2,

4f affording
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Scheme 1. Catalyst-Controlled Cycloaddition Reactions of
Enamine Derivatives with DMM
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the desired cyclohexane 2a in 39% yield (Table 1, entry 1).
Encouraged by this result, a wide range of Lewis acids were

then investigated, and the results were summarized in Table 1.
Other copper salts such as Cu(NTf2)2 and Cu(ClO4)2·6H2O
showed slightly better catalytic activities (Table 1, entries 2
and 3). As the use of metal chlorides such as FeCl3 and InCl3
resulted in no improvement (Table 1, entries 4 and 5), we then
turned to well-established metal triflates as catalysts. While
nickel and ytterbium triflates were found to be inactive (Table
1, entries 6 and 7) and a lower yield of 2a was observed with
iron triflate (Table 1, entry 8), both indium and scandium
triflates led to the formation of 2a in improved yields (Table 1,
entries 9 and 10), and the reaction catalyzed by In(OTf)3 was
completed in a shorter time. Notably, the addition of 4 Å MS
to the reaction mixture improved the yield to 92% (Table 1,
entry 11), whereas the reactions were unaffected when the
reduced catalyst loadings were employed (Table 1, entries 12
and 13). The temperature is important since the yields of 2a
dropped down at the higher or lower reaction temperatures
(Table 1, entries 14 and 15). Overall, no diastereomer was
observed under the reaction conditions studied.
Under the optimal conditions, a variety of sulfonyl enamides

were then examined for the all-alkene [2 + 2 + 2] annulation
with DMM. As shown in Figure 1, 2,3-dihydropyrrole
protected by the slightly stronger electron-withdrawing N-p-
fluorotosyl group (FTs, 1b) was less reactive than 1a, providing
2b in 84% isolated yield at rt. Thus, N-tosylated 2,3-
dihydropyrroles with various 4-alkyl substituents, such as
methyl (1c), n-propyl (1d), benzyl (1e), allyl (1f), and
propargyl (1g), were studied, and good to excellent yields of
the corresponding octahydroindoles (2c−g) were obtained
albeit for a prolonged time. The pendant multiple bonds in 2f
and 2g may allow for further elaboration. In addition, 4,5-

annulated N-tosyl-2,3-dihydropyrrole 1h worked well, giving
the tricyclic product 2h in 86% yield that resembles the core
structure of the hasubanan and acutumine alkaloids.12 To
compensate for the reduced reactivity of the double bond
caused by the conjugate effect of aryls, the less electron-
withdrawing p-methoxybenznesulfonyl group (Mbs)13 was
chosen for 4-aryl-2,3-dihydropyrroles, and the arylated
octahydroindoles 2i−k were isolated in acceptable yields,
although a longer reaction time was needed. In addition, this
cyclization was applicable for the larger cyclic enamides (1l
and 1m) and acyclic ones bearing N-alkyl (1n) or N-aryl (1o)
substituents.
Lewis acid catalyzed formal [4 + 2] cycloaddition reactions

of D−A cyclobutanes with unsaturated molecules have been
extensively studied by several groups.10,14 Generally, the
unsaturated components such as aldehydes, imines, indoles,
and enol ethers act as the nucleophile to trigger the
cyclization.11a,14b However, in the current reaction, electron-
deficient DMM is unlikely to serve as a nucleophile to initiate
the annulation with the putative D−A aminocyclobutanes or
the zwitterionic 1,4-dipoles formed from the first molecule of
DMM and sulfonyl enamides. Instead, possibly due to the
strong donating ability of the sulfonylamido group,15 the
cyclobutane ring is prone to open upon interacting with Lewis
acid and the nucleophilic attack of the zwitterionic 1,4-dipole

Table 1. Optimization of the [2 + 2 + 2] Cyclization

entry catalyst time (h) yielda,b (%)

1 Cu(OTf)2 8 39
2 Cu(NTf2)2 8 54
3 Cu(ClO4)2·6H2O 8 49
4 FeCl3 8 52
5 InCl3 8 trace
6 Ni(OTf)2 8 trace
7 Yb(OTf)3 8 trace
8 Fe(OTf)3 8 16
9 In(OTf)3 4 78
10 Sc(OTf)3 8 63
11c In(OTf)3 4 92
12c,d In(OTf)3 4 95
13c,e In(OTf)3 4 93
14c,f In(OTf)3 4 71
15c,g In(OTf)3 4 89

aReaction conditions: 1a (0.2 mmol), DMM (0.6 mmol), catalyst
(0.02 mmol) in DCM (2.0 mL), −20 °C. bYield determined by the
1H NMR spectrum of the crude mixture with tetrachloroethane
(TTCE) as an internal standard. cWith 4 Å MS (50 mg). dCatalyst (5
mol %). eCatalyst (2 mol %). fPerformed at −40 °C. gRun at 0 °C.

Figure 1. Scope for the [2 + 2 + 2] cyclization: 1 (0.3 mmol), DMM
(0.9 mmol), In(OTf)3 (5 mol %), and 4 Å MS (75 mg) in DCM (3.0
mL), −20 °C. Isolated yield. (a) Run at rt. (b) Run on 0.2 mmol scale
(1).
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intermediates on DMM may initiate the annulation (Scheme
2), similar to that proposed in the [4 + 2] cyclization of D−A

cyclobutanes by N-heterocyclic carbene catalysis.11b In this
regard, sulfonylamidocyclobutanes are in great demand for
exploring their possible [4 + 2] annulation with DMM.
The initial trial for the In(OTf)3-catalyzed reaction

performed at −78 °C was not successful (Table 2, entry 1).

Several attempts with reported Lewis catalysts such as
Yb(OTf)3

9d and InCl3
10b afforded only a trace amount of 3a

(Table 1, entries 2 and 3), whereas those with FeCl3
8 and

Cu(ClO4)2·6H2O
4g,9g produced cyclohexane 2a in moderate

yields (Table 2, entries 4 and 5). Pleasingly, in the presence of
4 Å MS, nickel triflate that proved to be inactive in the all-
alkene [2 + 2 + 2] cycloaddition showed a promising reactivity
for the [2 + 2] annulation, which afforded 3a in 69% yield
(Table 2, entry 6). Encouraged by this finding, both Fe(OTf)3
and Cu(OTf)2 were then studied, of which the latter exhibited
a superior result, thereby giving 3a in 82% yield (Table 2,
entries 7 and 8). Cooling the reaction at −20 °C further
improved the product yield to 90%, although a longer time
took for the completion of the reaction (Table 2, entry 9).

Notably, the product yield remained constant when 1.5 equiv
of DMM was employed (Table 2, entry 10).
Like the In(OTf)3-catalyzed all-alkene [2 + 2 + 2]

annulation, the Cu(OTf)2-catalyzed [2 + 2] cyclization showed
the similar tolerance for different functionalities. As depicted in
Figure 2, aminocyclobutanes bearing N-p-fluorotosyl (3b),

saturated and unsaturated alkyls (3c−g), six-membered aza-
cyclic (3h), and acyclic (3i) topologies were prepared in good
to excellent yields. Unfortunately, 3-aryl-substituted 2,3-
dihydropyrroles were not reactive under the copper triflate
catalysis.
Both the [2 + 2 + 2] and [2 + 2] cyclizations are highly

diastereoselective since only the cis-annulated diastereomers
were observed for 2a−m and 3a−h. The relative stereo-
chemistry of 2j, 2m, and 3e was unambiguously confirmed by
single-crystal X-ray analysis. Additionally, both annulation
reactions could be run on a 1 mmol scale without notable loss
of the yields (Scheme 3).
With 3a in hand, the reaction of 3a with DMM catalyzed by

indium triflate in the presence of 4 Å MS was then
investigated. As expected, 2a was isolated in 77% yield
(Scheme 4), thereby supporting the proposed reaction
pathway shown in Scheme 2. Interestingly, under either

Scheme 2. Proposed Pathway for [2 + 2 + 2] Cyclization

Table 2. Optimization of the [2 + 2] Cyclization

entry catalyst yielda,b (%)

1c In(OTf)3 no reaction
2 Yb(OTf)3 trace
3 InCl3 trace
4 FeCl3 (50)d

5 Cu(ClO4)2•6H2O (60)d

6 Ni(OTf)2 69
7 Fe(OTf)3 45
8 Cu(OTf)2 82
9e Cu(OTf)2 90
10e,f Cu(OTf)2 90

aReaction conditions: 1a (0.2 mmol), DMM (0.5 mmol), catalyst
(0.01 mmol), and 4 Å MS (20 mg) in DCM (2.0 mL), rt. bYield
determined by the 1H NMR spectrum of the crude mixture with
TTCE as an internal standard. cRun at −78 °C. dProduct 2a. eRun at
−20 °C, 24 h. fDMM (0.3 mmol).

Figure 2. Scope for the [2 + 2] cyclization: 1 (0.2 mmol), DMM (0.3
mmol), Cu(OTf)2 (5 mol %), and 4 Å MS (20 mg) in DCM (2.0
mL), −20 °C, 24 h. Isolated yield.

Scheme 3. [2 + 2 + 2] and [2 + 2] Cyclization at 1 mmol
Scale
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In(OTf)3 or Cu(OTf)2 catalysis, both di-tert-butyl methyl-
enemalonate (DBM) and ethyl 2-benzoyl acrylate (EBA) were
unreactive with enamide 1a. However, both were successfully
inserted into cyclobutane 3a catalyzed by In(OTf)3, yielding
octahydroindoles 2p and 2q in 74% and 76% yields,
respectively (Scheme 4). Moreover, a three-component
reaction of 1a with DMM and EBA under the same conditions
produced 2q in 41% yield along with 14% yield of 2a (eq 1),
demonstrating the viability of the Lewis acid-catalyzed one-pot
[2 + 2 + 2] cycloaddition reaction with three different alkenes.

In summary, catalyst-controlled stereoselective [2 + 2 + 2]
and [2 + 2] cycloaddition reactions of N-sulfonyl enamides
and dimethyl methylenemalonate have been developed for the
first time, providing convenient and practical synthetic
methods for the valuable aminated cyclohexanes and cyclo-
butanes from the same starting substrates. The amino-
cyclobutanes resulting from the Cu(OTf)2-catalyzed [2 + 2]
annulation could readily undergo the In(OTf)3-catalyzed [4 +
2] cyclization with another molecule of electron-deficient
alkenes, including dimethyl methylenemalonate itself, to
produce the aminocyclohexanes, demonstrating the unprece-
dented nucleophilicity of the donor−acceptor cyclobutanes for
triggering the annulation under Lewis acid catalysis. Moreover,
relying on the subtle reactivity change, the all-alkene [2 + 2 +
2] cycloaddition reaction of one sulfonyl enamide with
dimethyl methylenemalonate and less activated alkenes has
been also exemplified.
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