Ylide reactions have been developed as one of the powerful approaches for the synthesis of small ring compounds. Recently, much attention has been paid to the synthesis of fused bicyclic compounds via ylide routes. During our study on ylide chemistry, we developed a tandem reaction of allylic ylide with α,β-unsaturated ketones for the rapid construction of functionalized cyclohexadiene epoxides with multiple stereogenic centers. In particular, optically active cyclohexadiene epoxides could be easily prepared with high enantiomeric excesses in good yields by remote control of enantioselectivity via chiral sulfur ylides. In this communication, we will report our preliminary results.

The reactions of allylic sulfur ylides with chalcone were reported to give vinylcyclopropanes. In the presence of K$_2$CO$_3$, unexpectedly, we found that the reaction of crotonate-derived sulfonium salt 1 with chalcone only gave the cyclohexadiene epoxides rather than cyclopropanes (Scheme 1). Further studies showed that both β-aryl- and β-alkyl-substituted α,β-unsaturated ketones are good substrates, affording the cyclohexadiene epoxide derivatives with excellent diastereoselectivities (>99/1) in good to high yields (60–93%). In all cases examined, cyclopropanes were not observed. As shown in Table 1, both electron-donating and electron-withdrawing substituents on the aryl ring proved to be well-tolerated but influenced slightly the yields (entries 1–4). Trifluoromethyl-substituted ketone 2e gave cyclohexadiene epoxide 4e in 86% yield (entry 5, Table 1). Propenylphenylketone 2f furnished the desired product in 85% yield (entry 6). The reaction of ketone 2g also proceeded well to afford product 4g with high chemoselectivity (entry 7). (E)-Methyl-2-oxo-4-phenylbut-3-enoate and (E)-ethyl-2-oxo-pent-3-enoate also gave the desired epoxides in good yields (entries 9 and 10).

Encouraged by this tandem reaction, we also investigated its intramolecular version and found it proceeded very well (Table 2), giving the desired tricyclic cyclohexadiene epoxides with excellent diastereoselectivities (>99/1) in good to high yields (up to 85%). For example, allylic sulfonium salt 5a was treated with K$_2$CO$_3$ to afford cyclohexadiene epoxide 6a as a single product in 69% yield (entry 1, Table 2). Other sulfonyl salts such as 5b–f, which are readily available from crotonate, proved to be quite good for this cyclization (Table 2). This method provides a good way to prepare tricyclic compounds with a cyclohexadiene epoxide unit.

The present reaction makes it readily accessible to highly functionalized cyclohexadiene epoxide derivatives with excellent diastereoselectivity and chemoselectivity, prompting us to develop its asymmetric version using chiral sulfur ylides. Using camphor-derived sulfonium salts 7 and 8, fortunately, we found that both the intermolecular and the intramolecular reactions worked very well, furnishing the desired epoxides with higher than 91% ee in moderate to good yields (Scheme 2). Thus, the current reaction provides an excellent example for remote control of enantioselectivity.

The absolute configuration of epoxide 6d was determined by X-ray analysis. The stereochemical model, as shown in Figure 1, could explain the enantioselection, in which the first Michael addition attacked from the re face of the enone. A clear mechanism waits further investigation.

The functionalized epoxide derivatives prepared by the current method are potentially useful. As shown in Scheme 3, for example, compound 4b was found to react with sodium methoxide to give the corresponding ring opening product 9 with high regiospecificity. Interestingly, treatment of 4b with LiBEt$_3$H afforded bicyclic compound 10 stereospecifically in 87% yield.

In summary, we have developed a tandem Michael addition/ylide epoxidation for the rapid creation of highly functionalized cyclohexadiene epoxide skeletons with three stereocenters.

2. Suzhou University.
3. Suzhou University.

Table 1. Tandem Michael Addition/Ylide Epoxidation Reaction

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>T (°C)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2a</td>
<td>20</td>
<td>90</td>
</tr>
<tr>
<td>2</td>
<td>2b</td>
<td>0</td>
<td>93</td>
</tr>
<tr>
<td>3</td>
<td>2c</td>
<td>-20</td>
<td>80</td>
</tr>
<tr>
<td>4</td>
<td>2d</td>
<td>0</td>
<td>77</td>
</tr>
<tr>
<td>5</td>
<td>2e</td>
<td>-20</td>
<td>86</td>
</tr>
<tr>
<td>6</td>
<td>2f</td>
<td>-15</td>
<td>85</td>
</tr>
<tr>
<td>7</td>
<td>2g</td>
<td>0</td>
<td>68</td>
</tr>
<tr>
<td>8</td>
<td>2i</td>
<td>-20</td>
<td>60</td>
</tr>
<tr>
<td>9</td>
<td>2j</td>
<td>-20</td>
<td>81</td>
</tr>
<tr>
<td>10</td>
<td>2k</td>
<td>-20</td>
<td>67</td>
</tr>
</tbody>
</table>

© 2008 American Chemical Society
useful in organic synthesis. Further studies on the mechanism are under investigation in our laboratory.

Acknowledgment. We are grateful for the financial support from the National Science Foundation of China, the Major State Basic Research Development Program (Grant No. 2006C0806105), and The Chinese Academy of Sciences. This paper is dedicated to Professor Xiyan Lu on the occasion of his 80th birthday.

Supporting Information Available: Detailed experimental procedures, characterization data for all new compounds (PDF), and cif files of single crystals 4a, 6c, 6d, and 10 are available. This material is available free of charge via the Internet at http://pubs.acs.org.

References

For details, please see the Supporting Information, and ee values were determined by chiral HPLC.

(11) The structures of 4a, 6c, 6d, and 10 were determined by X-ray analysis.