One-Pot Screening of Titanium Catalysts for Ethylene Polymerization

Xiao-Hong Yang, Xiu-Li Sun, Fu-Bin Han, Bo Liu, Yong Tang,* Zheng Wang, Ming-Li Gao, Zuowei Xie,* and Shi-Zhen Bu

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, People's Republic of China, and Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, People's Republic of China

Received April 4, 2008

A simple and practical one-step method for the screening of new titanium catalysts for olefin polymerization has been developed, which allows to combine ligands such as enamine and salicylaldehydederived imines with TiCl₄(THF)₂ in situ for direct activity evaluation. By this strategy, β -carbonylenamine made TiCl₄(THF)₂, a highly active and single-site-like catalyst for ethylene polymerization and copolymerization. A rationale involving a newly formed titanium complex that was characterized by X-ray analysis is discussed.

Introduction

TiCl₄ is one of the key components of heterogeneous Ziegler–Natta catalysts for olefin polymerization.^{1,2} Under homogeneous conditions, TiCl₄(THF)₂ could also promote ethylene polymerization upon activation with modified methylaluminoxane (MMAO) but gave bimodal polyethylene with low activity (2.58 × 10⁴ g/mol Ti·h·atm). Under the same polymerization conditions, unexpectedly, we found that TiCl₄(THF)₂, *in situ* mixed with enamine **1a**,³⁻⁵ became highly active to give polyethylene with a narrow molecular distribution, and the activity was as high as 2.06×10^6 g/mol Ti·h·atm (Scheme 1). Thus, this provides a useful method for the discovery of new olefin polymerization catalysts.⁶ In this paper, we report the results in detail.

Results and Discussion

Initially, it was found that polyethylene was obtained with high activity (entry 1, Table 1) by addition of an *in situ* mixed

solution of TiCl₄(THF)₂ and enamine **1a** to MMAO (Al/Ti = 2000:1) in toluene under an ethylene atmosphere. To further improve the activity, several polymerization conditions were screened, and the results are summarized in Table 1. The Al/Ti ratio proved to influence the activity slightly (entries 1–4, Table 1). Under the screened conditions, the optimal ratio is 1000:1. At 0 °C, the polymerization of ethylene proceeded well to give polyethylene with high activity and narrow PDI ($M_w/M_n = 1.33$,

^{*} Corresponding authors. E-mail: tangy@mail.sioc.ac.cn; b792752@mailserv.cuhk.edu.hk

⁽¹⁾ Boor, J. Ziegler-Natta Catalysts and Polymerizations; Academic Press: New York, 1979; pp 587–598.

⁽²⁾ For recent reviews on the catalysts of olefin polymerization, see:(a) Britovsek, G. J. P.; Gibson, V. C.; Wass, D. F. Angew. Chem., Int. Ed. 1999, 38, 428. (b) Ittel, S. D.; Johnson, L. K.; Brookhart, M. Chem. Rev. 2000, 100, 1169. (c) Mecking, S. Angew. Chem., Int. Ed. 2001, 40, 534. (d) Gibson, V. C.; Spizmesser, S. K. Chem. Rev. 2003, 103, 283. (e) Yoshida, Y.; Matsui, S.; Fujita, T. J. Organomet. Chem. 2005, 690, 4382. (f) Furuyama, R.; Saito, J.; Ishii, S.; Makio, H.; Mitani, M.; Tanaka, H.; Fujita, T. J. Organomet. Chem. 2005, 690, 4398. (g) Bianchini, C.; Giambastiani, G.; Rios, I. G.; Mantovani, G.; Meli, A.; Segarra, A. M. Coord. Chem. Rev. 2006, 250, 1391. (h) Gibson, V. C.; Redshaw, C.; Solan, G. A. Chem. Rev. 2007, 107, 1745.

⁽³⁾ For sulfur-containing catalysts, see:(a) Miyatake, T.; Mizunuma, K.;
Seki, Y.; Kakugo, M. Makromol. Chem., Rapid Commun. 1989, 10, 349.
(b) Miyatake, T.; Mizunuma, K.; Kakugo, M. Makromol. Symp. 1993, 66, 203.
(c) van der Linden, A.; Schaverien, C. J.; Meijboom, N.; Ganter, C.;
Orpen, A. G. J. Am. Chem. Soc. 1995, 117, 3008.
(d) Graf, D. D.; Schrock, R. R.; Davis, W. M.; Stumpf, R. Organometallics 1999, 18, 843.
(e) Gibson, V. C.; Nicholas, C. P.; Long, J.; Martin, J.; Solan, G. A.; Stichbury, J. C. J. Organomet. Chem. 1999, 590, 115.
(f) Janas, Z.; Jerzykiewicz, L. B.; Richards, R. L.; Sobota, P. Chem. Commun. 1999, 1015.
(g) Takaoki, K.; Miyatake, T. Macromol. Symp. 2000, 157, 251.
(h) Janas, Z.; Jerzykiewicz, L. B.; Prybylak, K.; Sobta, P.; Szczegot, K. Eur. J. Inorg. Chem. 2004, 1639.

⁽⁴⁾ For [O-NX] complexes as catalysts for olefin polymerization, see:
(a) Tshuva, E. Y.; Goldberg, I.; Kol, M. J. Am. Chem. Soc. 2000, 122, 10706. (b) Tshuva, E. Y.; Goldberg, I.; Kol, M.; Weitman, H.; Goldschmidt, Z. Chem. Commun. 2000, 379. (c) Tshuva, E. Y.; Goldberg, I.; Kol, M.; Goldschmidt, Z. Organometallics 2001, 20, 3017. (d) Tshuva, E. Y.; Goldberg, I.; Kol, M.; Goldschmidt, Z. Chem Commun. 2001, 2120. (e) Tshuva, E. Y.; Groysman, S.; Goldberg, I.; Kol, M.; Genizi, E.; Goldschmidt, Z. Inorg. Chim. Acta 2003, 345, 137. (g) Segal, S.; Goldberg, I.; Kol, M. Organometallics 2005, 24, 200. (h) Yeori, A.; Goldberg, I.; Shuster, M.; Kol, M. J. Am. Chem. Soc. 2006, 128, 13062. (i) Gendler, S.; Groysman, S.; Goldschmidt, Z.; Shuster, M.; Kol, M. J. Polym. Sci. Part A: Polym. Chem. 2006, 44, 1136.

⁽⁵⁾ For β-enaminoketonato metal complexes as olefin polymerization catalysts, see: (a) Guan, Z.; Marshall, W. J. Organometallics 2002, 21, 3580.
(b) Li, X.; Dai, K.; Ye, W.-P.; Pan, L.; Li, Y. Organometallics 2004, 23, 1223. (c) Tang, L.; Hu, T.; Bo, Y.; Li, Y.; Hu, N. J. Organomet. Chem. 2005, 690, 3125. (d) Tang, L.; Duan, Y.; Pan, L.; Li, Y. J. Polym. Sci. Part A: Polym. Chem. 2005, 43, 1681. (e) Zhang, L.; Brookhart, M.; White, P. S. Organometallics 2006, 25, 1868.

 Table 1. Optimization of Al/Ti Ratio and Polymerization

 Temperature^a

entry	Al/Ti	$T (^{\circ}C)^{b}$	PE (g)	activity ^c	$M_{\mathrm{w}}{}^{d,e}$	$M_{\rm w}/M_{\rm n}^{\ e}$
1	2000:1	30	0.76	1.52	15.7	2.51
2	1500:1	30	0.89	1.78	21.0	2.49
3	1000:1	30	1.03	2.06	20.7	2.27
4	500:1	30	0.66	1.32	38.8	2.09
5	1000:1	0	0.85	1.70	53.2	1.33
6	1000:1	50	0.50	1.00	18.5	2.70
7	1000:1	70	0.42	0.84	14.3	2.58

^{*a*} Conditions: 50 mL of toluene; TiCl₄(THF)₂/**1a** = 1:1 = 3 μ mol; cocatalyst, MMAO (1.9 mmol/mL in toluene); 10 min; 1 atm ethylene pressure. ^{*b*} Temperature of the oil bath. ^{*c*} 10⁶ g/mol Ti·h·atm. ^{*d*} 10⁴ g/mol. ^{*e*} Determined by GPC.

entry 5).⁷ Increasing the temperature to 30 °C (entry 3 vs 5, Table 1), the activity reached 2.06×10^6 g PE/mol Ti · h · atm. Further raising the temperature lowered the activity greatly (entries 6 and 7, Table 1). The high-temperature GPC analysis revealed that the M_w of the polyethylene was temperature- and Al/Ti ratio-dependent. The molecular weight distribution ranged from 1.33 to 2.70, similar to those of PE produced by a single-site catalyst.⁸ ¹³C NMR analysis of the polyethylene showed that the polymer is highly linear polyethylene without branches.⁷ This result was also consistent with the analysis of differential scanning calorimetry (T_m values 126–136 °C).

Encouraged by the aforementioned results, we first examined various ortho-substituted aniline-derived enamines 1a-j and $2\mathbf{a}-\mathbf{c}$ under the optimal conditions. As shown in Table 2, the ortho substituents on aniline strongly influenced the activity. Increasing the steric hindrance of the ortho substituents resulted in a significant decrease of catalytic activities (entries 1-3, 7-9, and 11-13) but an increase of the molecular weight of the polyethylene. For example, n-propyl-substituted enamine 1g gave high activity (1.98 \times 10⁶ g/mol·h·atm, entry 7) and isopropyl-substituted enamine **1h** decreased to 0.86×10^6 g/mol • h • atm (entry 8). For bulky tert-butyl-substituted enamine 1i, the lowest activity was observed (0.08 \times 10⁶ g/mol Ti \cdot h \cdot atm, entry 9). Compared with [O⁻NS]-enamines 1a-c, the corresponding $[O^-NO]$ -enamines 2a-c gave lower activities (entry 1 vs 11, 2 vs 12, 3 vs 13). When the phenylthio group of 1a was replaced with a perfluorophenylthio group (1f), the activity was almost the same, and the resulting polymer became insoluble in 1,2,4-trichlorobenzene even at 135 °C, probably due to its high molecular weight (entry 1 vs 6, Table 2). Substitution of the phenylthio group of **1a** with a chlorine atom decreased the activity greatly (entries 4 and 5).

To further understand the relationship between the activity and structure, several other enamines with different structures were screened, and the results are summarized in Scheme 2.

(8) (a) Huang, B. T., Chen, W. Metallocene Catalysts and Their Olefin Polymers; Chemical Engineering Press: Beijing, 2000. (b) Ready, T. E.;

(c) Hlatky, G. G. Chem. Rev. 2000, 100, 1347.

Gurge, R.; Chien, J. C. W.; Rausch, M. D. Organometallics 1998, 17, 5236.

on the development of screening strategies \mathcal{F}

Organometallics, Vol. 27, No. 18, 2008 4619

Table 2. One-Pot Ethylene Polymerization Using Ligands 1a-j and 2a-c upon Activation with $MMAO^{\alpha}$

Ph R 2	a-1j la-2c

entry	R (L)	PE (g)	activity ^b	$M \mathbf{w}^{c. d}$	Mw/Mn ^a
1	s- (1a)	1.03	2.06	20.7	2.27
2	Me S- Me (1b)	0.51	1.02	39.7	1.88
3	<i>i</i> -Pr S- <i>i</i> -Pr (1c)	0.36	0.72	n.d ^e	n.d ^e
4	s-Cl (1d)	0.52	1.04	n.d ^e	n.d ^e
5	Cl S Cl	0.097	0.19	36.6	2.30
6	$S \xrightarrow{F} F$ $F \xrightarrow{F} F$ (1f)	1.00	2.00	n.d ^e	n.d ^e
7	S~~(1g)	0.99	1.98	18.9	2.09
8	S-(1h)	0.43	0.86	38.6	2.29
9	S	0.04	0.08	32.8 ^f	2.56 ^f
10	$s \rightarrow \gamma$ (1j)	1.04	2.08	25.3	1.86
11	0- (2a)	0.56	1.12	19.7	2.33
12	$\overset{\text{Me}}{\underset{\text{Me}}{\longrightarrow}}(2b)$	0.075	0.15	22.5	1.83
13	i-Pr O i-Pr i-Pr	0.049	0.097	n.d ^e	n.d ^e

^{*a*} Conditions: 50 mL of toluene; TiCl₄(THF)₂/ligand = 1:1 = 3 μ mol; MMAO (1.6 mL, 1.9 mmol/mL in toluene); temperature of the oil bath 30 °C; 10 min; 1 atm of ethylene pressure. ^{*b*}10⁶ g/mol Ti · h · atm. ^{*c*}10⁴ g/mol. ^{*d*}Determined by GPC. ^{*e*}Not determined probably due to high molecular weights. ^{*f*}Bimodal; high molecular weight part.

Compared with that of enamine **1a**, the activity of 2-(isopropylthio)ethanamine-derived enamine **3** decreased slightly. Replacement of the phenyl group of **1a** with a trifluromethyl or methyl group (enanmines **4** and **6**) also reduced the activity greatly. 1,3-Diphenylpropane-1,3-dione- and 1-phenylbutane-1,3-dione-derived enamines gave similar results on ethylene polymerization (**7** in Scheme 2 vs **1a** in Table 2). Diaminederived enamine **8** led to poor activity. Further studies showed that salicylaldehyde-derived imines⁹ **9** and **10**¹⁰ were also suitable ligands for this strategy (Scheme 2). For instance, the treatment of TiCl₄(THF)₂ with **9** and MMAO under ethylene atmosphere provided the desired polyethylene with

⁽⁶⁾ For leading references on the development of screening strategies for the discovery of olefin polymerization catalyst, see:(a) Tian, J.; Coates, G. W. Angew. Chem., Int. Ed. 2000, 39, 3626. (b) Jones, D. J.; Gibson, V. C.; Green, S. M.; Maddox, P. J. Chem. Commun. 2002, 1038. (c) Murphy, V.; Volpe, A. F.; Weinberg, W. H. Curr. Opin. Chem. Biol. 2003, 7, 427. (d) Boussie, T. R.; Diamond, G. M.; Goh, C.; Hall, K. A.; LaPointe, A. M.; Leclerc, M.; Lund, C.; Murphy, V.; Shoemaker, J. A. W.; Tracht, U.; Turner, H.; Zhang, J.; Uno, T.; Rosen, R. K.; Stevens, J. C. J. Am. Chem. Soc. 2003, 125, 4306. (e) Mason, A. F.; Coates, G. W. J. Am. Chem. Soc. 2004, 126, 10798. (f) Adams, N.; Arts, H. J.; Bolton, P. D.; Cowell, D.; Dubberley, S. R.; Friederichs, N.; Grant, C. M.; Kranenburg, M.; Sealey, A. J.; Wang, B.; Wilson, P. J.; Cowley, A. R.; Mountford, P.; Schroder, M. Chem. Commun. 2004, 434. (g) Jones, D. J.; Gibson, V. C.; Green, S. M.; Maddox, P. J.; White, A. J. P.; Williams, D. J. J. Am. Chem. Soc. 2005, 127, 11037. (7) For details, please see the Supporting Information.

^{*a*} Conditions: 50 mL of toluene; TiCl₄(THF)₂/ligand = 1:1 = 3 μ mol; MMAO (1.6 mL, 1.9 mmol/mL); temperature of the oil bath 30 °C; 10 min; 1 atm of ethylene pressure. ^{*b*}20 min. ^{*c*}30 mL of toluene, 50 °C, 15 min.

high activity and narrow molecular distribution (PDI = 2.15) (Scheme 2).

TiCl₄(THF)₂ showed low activity toward ethylene polymerization, but the addition of enamine **1a** into the same system increased the activity from 2.58×10^4 to 2.06×10^6 g/mol Ti • h • atm. On the basis of these results, we are assuming that a new single-site catalyst was formed very quickly in the presence of enamine and MMAO. ¹H NMR (in CDCl₃) monitoring of the reaction of enamine **5** with TiCl₄(THF)₂ demonstrates this hypothesis clearly. As shown in Figure 1, after mixing **5** with TiCl₄(THF)₂ for 30 min and 1 h under room temperature, 51 and 61 mol % of **5**, respectively, were transformed into a new compound.¹¹ To determine the structure of this new-formed compound, we mixed enamine **5** with titanium tetrachloride at -78 °C and then warmed it to room temperature for 8 h, affording a pure complex in 97% yield (Scheme 3). ¹H NMR spectra of this complex proved virtually the same as that of the *in situ*-formed compound (Figure 1), indicating that the same compound was generated.

By ¹H and ¹³C NMR analysis, the structure of the new-formed complex was assigned to be compound **11** (Scheme 3), which was further confirmed by an X-ray crystallographic analysis (Figure 2).¹² As shown in Figure 2, the X-ray analysis showed that the geometry at the titanium center could be described as a distorted octahedron with the three chlorine atoms in a *mer* disposition. Both Cl1 and Cl2 atoms are located *cis* to the Cl3 atom, which is favorable for the insertion of the monomer. Noticeably, the enamine was transformed to the imine form during the formation of the complex (Scheme 3).

Upon activation by MMAO, complex **11** proved to be a highly active catalyst for ethylene polymerization. The activity was comparable to that of the corresponding $5/\text{TiCl}_4(\text{THF})_2$ mixture, as shown in Scheme 4. The GPC analysis revealed that the molecular weight and distributions of polyethylene produced by complex **11** were very similar to those of the corresponding "one-pot" method. These results, combined with the result of comparisons of **10** (in one pot) and complex **12** in Scheme 4, suggested that these two systems have the same catalytic species, disclosing the role of the enamine and the nature of the one-pot screening process.

Noticeably, the present screening method could also be used for the evaluation of the copolymerization of ethylene and α -olefin. Under the same conditions for ethylene polymerization, for example, an *in situ* mixture of enamine 5 and TiCl₄(THF)₂ could promote the copolymerization of ethylene with 1-hexene well (Table 3). Higher activities than that of ethylene polymerization were always observed, and the highest activity of 4.2 $\times 10^{6}$ g/mol Ti · h · atm was obtained when the initial concentration of 1-hexene was 0.48 M (entry 2). With the increasing concentration of 1-hexene, both the molecular weight and the comonomer content of the resulting polymers improved significantly. For example, when the initial concentration of 1-hexene is 0.25 M, $M_{\rm w}$ of 12.6 \times 10⁴ g/mol and 21 mol % comonomer content were reached, which have been raised to 19.6×10^4 g/mol and 38 mol %, respectively, with a 3 times concentration of 1-hexene used.

Conclusion

Traditionally, the discovery of single-site catalysts involved a two-step process, including the time-consuming synthesis of pure metal complexes and their evaluation for olefin polymerization (strategy **a** in Scheme 5). Recently, Murphy and Gibson developed independently an elegant strategy of the synthesis of metal complex through the reaction of ligands with the prepared M(CH₂Ph)₄^{6d} and tolylCrCl₂(THF)₃,^{6b,g} respectively,

⁽⁹⁾ For leading references on phenoxyimine-derived catalysts, see: (a) Matsui, S.; Tohi, Y.; Mitani, M.; Saito, J.; Makio, H.; Tanaka, H.; Nitabaru, M.; Nakano, T.; Fujita, T. *Chem. Lett.* **1999**, 1065. (b) Matsui, S.; Mitani, M.; Saito, J.; Tohi, Y.; Makio, H.; Tanaka, H.; Fujita, T. *Chem. Lett.* **1999**, 1263. (c) Yoshida, Y.; Matsui, S.; Takagi, Y.; Mitani, M.; Nitabaru, M.; Nakano, T.; Tanaka, H.; Fujita, T. *Chem. Lett.* **2000**, 1270. (d) Younkin, T. R.; Connor, E. F.; Henderson, J. I.; Friedrich, S. K.; Grubbs, R. H.; Bansleben, D. A. *Science* **2000**, 287, 460. (e) Gibson, V. C.; Mastroianni, S.; Newton, C.; Redshaw, C.; Solan, G. A.; White, A. J. P.; Williams, D. J. *J. Chem. Soc., Dalton Trans.*, **2000**, 1969. (f) Bott, R. K. J. H.; David, L.; Schormann, M.; Bochmann, M.; Lancaster, S. J. *J. Organomet. Chem.* **2003**, **605**, 135. (g) Zhang, H.; Katao, S.; Nomura, K.; Huang, J. *Organometallics* **2007**, 26, 5967.

⁽¹⁰⁾ For [O⁻NX]TiCl₃ as olefin catalysts, see:(a) Hu, W.; Sun, X.; Wang, C.; Gao, Y.; Tang, Y.; Shi, L.; Xia, W.; Sun, J.; Dai, H.; Li, X.; Yao, X.; Wang, X. Organometallics **2004**, 23, 1684. (b) Wang, C.; Sun, X.; Guo, Y.; Gao, Y.; Liu, B.; Ma, Z.; Xia, W.; Shi, L.; Tang, Y. Macromol. Rapid Commun. **2005**, 26, 1609. (c) Wang, C.; Ma, Z.; Sun, X.; Gao, Y.; Guo, Y.; Tang, Y.; Shi, L. Organometallics **2006**, 25, 3259. (d) Gao, M.; Wang, C.; Sun, X.; Qian, C.; Ma, Z.; Bu, S.; Tang, Y.; Xie, Z. Macromol. Rapid Commun. **2007**, 28, 1511.

⁽¹¹⁾ In the polymerization conditions, MMAO can promote the formation of complex since MAO as well as alkylaluminium in MMAO is known as a base that is able to abstract the active hydrogen of alcohol; see: Marques, M. M.; Correia, S. G.; Ascenso, J. R.; Ribeiro, A. F. G.; GOMES, P. T.; Dias, A. R.; Foster, P.; Rausch, M. D.; Chien, J. C. W J. Polym. Sci. Part A: Polym. Chem. **1999**, *37*, 2457.

⁽¹²⁾ For details, please see the Supporting Information. CCDC 667769 (11) contains the supplementary crystallographic data. This data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk /data request/cif.

Figure 1. . ¹H NMR spectra of (a) ligand 5, (b) mixing 5 with $TiCl_4(THF)_2$ for 30 min, (c) mixing 5 with $TiCl_4(THF)_2$ for 1 h, and (d) complex 11.

Figure 2. Molecular structure of complex 11. Selected bond lengths (Å) and angles (deg): Ti-O(1) = 1.823(2), Ti-N(1) = 2.155(3), Ti-Cl(3) = 2.2666(12), Ti-Cl(2) = 2.2881(13), Ti-Cl(1) = 2.3298(12), Ti-S(1) = 2.5953(12), N(1)-C(3) = 1.309(5), N(1)-C(4) = 1.478(4), O(1)-C(1) = 1.334(4), C(1)-C(2) = 1.347(5); O(1)-Ti-N(1) = 84.63(11), O(1)-Ti-Cl(3) = 105.18(9), O(1)-Ti-Cl(2)=97.37(10), O(1)-Ti-Cl(1)=92.45(9), O(1)-Ti-S(1) = 162.46(9), N(1)-Ti-Cl(2) = 86.85(9), N(1)-Ti-Cl(3) = 170.12(9), N(1)-Ti-Cl(1) = 84.00(9), Cl(3)-Ti-Cl(2) = 92.86(5), Cl(3)-Ti-Cl(1) = 94.33(5), Cl(2)-Ti-Cl(1) = 165.89(5).

followed by activity evaluation without the purification of the complex. In this paper, we have developed a simple and practical one-step method for the screening of new titanium catalysts for olefin polymerization (Scheme 5). This method allows combining ligands such as enamine and salicylaldehyde-derived imines with $TiCl_4(THF)_2$ *in situ* for direct activity evaluation.

Scheme 4. Comparison of the Ethylene Polymerization of Complexes 11 and 12 with the Corresponding One-Pot Approach^a

^{*a*} Conditions: 50 mL of toluene; cat. 3 μ mol; Al/Ti 1000; oil bath temperature 30 °C; 10 min; 1 atm of ethylene pressure. ^{*b*}Determined by GPC. ^{*c*}30 mL of toluene, oil bath temperature 50 °C, 15 min.

 Table 3. Primary Results of Ethylene and 1-Hexene

 Copolymerization Using a One-Pot Approach^a

entry	1-hexene (mmol)	<i>T</i> (°C)	t (min)	activity ^b	$M_{\rm w}{}^c,^d$	$M_{\rm w}/M_{\rm n}^{\ d}$	comonomer content (mol %) ^e
1	12	30	10	2.9	12.6	2.30	21
2	24	30	10	4.2	16.4	2.14	30
3	36	30	10	3.3	19.6	2.15	38
4	12	0	10	0.62	69.9	1.78	f
5	12	50	10	1.38	14.1	2.44	f
6	12	30	30	1.48	17.0	2.24	ſ
7^g	12	30	10	2.39	35.4	1.98	f

^{*a*} Conditions: toluene (50 mL); TiCl₄(THF)₂/**5** = 1:1 = 3 μ mol; 1.6 mL of MMAO (1.9 mmol/mL); 1 atm of ethylene pressure. ^{*b*} 10⁶ g/mol Ti • h • atm. ^{*c*} 10⁴ g/mol. ^{*d*} Determined by GPC. ^{*e*} Determined by ¹³C NMR at 110 °C in 1,2-dichlorobenzene-*d*₄. ^{*f*} Not determined. ^{*g*} TiCl₄(THF)₂/**1g** = 1:1 = 3 μ mol.

By this strategy, β -carbonylenamine made TiCl₄(THF)₂, a highly active and single-site-like catalyst for ethylene polymerization.

Scheme 5. Strategies for the Discovery of Olefin Polymerization Catalysts

Experimental Section

General Considerations. All manipulations of air- and/or moisture-sensitive compounds were performed under a nitrogen atmosphere using standard Schlenk techniques. ¹H NMR and ¹³C NMR spectra were recorded on a Varian XL-300 MHz spectrometer with TMS as the internal standard. Mass spectra were obtained using a HP5959A spectrometer. IR spectra were recorded using a Nicolet AV-360 spectrometer. Elemental analysis was performed by the Analytical Laboratory of Shanghai Institute of Organic Chemistry (CAS). M_n , M_w , and M_w/M_n values of polymers were determined with a Waters Alliance GPC 2000 series at 135 °C (using polystyrene calibration, 1,2,4-trichlorobenzene as the solvent at a flow rate of 0.92 mL/min). ¹³C NMR data for polymers were obtained using o-dichlorobenzene- d_4 as the solvent at 110 °C. Transition melting temperatures of the polymers were determined by DSC with a Perkin-Elmer Pyris 1 differential scanning calorimeter, measured upon reheating the polymer sample to 200 °C at a heating rate of 10 °C/min. X-ray crystallographic data were collected using a Bruker AXSD8 X-ray diffractometer. Toluene, THF, and hexane were distilled over sodium/benzophenone ketyl prior to use. Dichloromethane was distilled over CaH₂. Modified methylaluminoxane (MMAO) was purchased from Akzo Chemical as a 1.9 M toluene solution. Polymerization-grade ethylene was purified before use.

Synthesis of (Z)-1-Phenyl-3-(2-(phenylthio)phenylamino)but-2-en-1-one (1a). To a solution of 1-phenylbutane-1,3-dione (3.24 g, 20.0 mmol) and 2-(phenylthio)benzenamine (3.84 g, 19.1 mmol) in ethanol (30 mL) were added a few drops of acetic acid at room temperature. After refluxing with stirring for 20 h, the resulting mixture was cooled to room temperature to afford a yellow solid, which could be used without further purification. Yield: 2.67 g (41%). ¹H NMR (300 MHz, CDCl₃): δ 12.93 (s, 1 H), 7.84–7.87 (m, 2 H), 7.47–7.15 (m, 12 H), 5.85 (s, 1 H), 1.97 (s, 3 H). ¹³C NMR (75 MHz, CDCl₃): δ 188.84, 162.06, 139.94, 137.78, 133.95, 133.52, 132.55, 131.20, 130.83, 129.25, 128.16, 127.78, 127.22, 127.14, 126.99, 126.88, 94.32, 20.06. IR (KBr) ν 3060, 1597, 1574, 1546, 1317, 1287, 1271, 1060, 747, 732. Anal. Calcd C₂₂H₁₉NOS (345.46): C 76.49, H 5.54, N 4.05. Found: C 76.64, H 5.63, N 3.77. MS (EI) (*m*/*z*): 345 (M⁺).

Synthesis of (Z)-3-(2-(2, 6-Dimethylphenylthio)phenylamino)-1-phenylbut-2-en-1-one (1b). The same procedure as that for the preparation of **1a** was used. 1-Phenylbutane-1,3-dione (0.31 g, 1.9 mmol) and 2-(2,6-dimethylphenylthio)benzenamine (0.40 g, 1.7 mmol) were used. Yield: 0.47 g (72%). ¹H NMR (300 MHz, CDCl₃): δ 12.84 (s, 1 H), 7.99–7.96 (m, 2 H), 7.46–7.43 (m, 3 H), 7.25–7.01 (m, 6 H), 6.44 (dd, J = 1.2 Hz, 7.8 Hz, 1 H), 5.99 (s, 1 H), 2.40 (s, 6 H), 2.06 (s, 3 H). ¹³C NMR (75 MHz, CDCl₃): δ 188.93, 163.21, 144.06, 139.91, 136.21, 135.14, 130.83, 129.45, 129.17, 128.54, 128.15, 127.50, 127.15, 124.86, 124.76, 93.95, 21.68, 20.01. IR (KBr): ν 3420, 3060, 2920, 1599, 1577, 1317, 1284, 747. Anal. Calcd for C₂₄H₂₃NOS (373.15): C 77.18, H 6.21, N 3.75. Found: C 77.44, H 6.18, N 3.34. MS (EI) (*m/z*): 373 (M⁺).

Synthesis of (Z)-3-(2-(2,6-Diisopropylphenylthio)phenylamino)-1-phenylbut-2-en-1-one (1c). The same procedure as that for the preparation of 1a was used. 1-Phenylbutane-1, 3-dione (0.19 g, 1.2 mmol) and 2-(2,6-diisopropylphenylthio)benzenamine (0.30 g, 1.1 mmol) were used. Yield: 0.32 g (71%). ¹H NMR (300 MHz, CDCl₃): δ 12.82 (s, 1 H), 7.88–7.91 (m, 2 H), 7.48–7.43 (m, 4 H), 7.30–7.01 (m, 5 H), 6.39 (dd, J = 1.5 Hz, 7.5 Hz, 1 H), 6.02 (s, 1 H), 3.65-3.61 (m, 2 H), 2.08 (s, 3 H), 1.15 (s, 6 H), 1.12 (s, 6 H). ¹³C NMR (75 MHz, CDCl₃): δ 188.98, 154.22, 139.96, 138.55, 130.87, 130.45, 128.22, 127.57, 127.50, 127.20, 126.78, 125.34, 124.55, 124.25, 93.90, 31.66, 24.17, 19.96. IR (KBr) v 3060, 2980, 1597, 1575, 1461, 1319, 1284, 745. Anal. Calcd for C₂₈H₃₁NOS (429.62): C 78.28, H 7.27, N 3.26. Found: C 78.29, H 7.51, N 3.07. MS (EI) (*m*/*z*): 430 (M⁺).

Synthesis of (*Z*)-3-(2-(3-Chlorophenylthio)phenylamino)-1-phenylbut-2-en-1-one (1d). The same procedure as that for the preparation of 1a was used. 1-Phenylbutane-1,3-dione (0.68 g, 4.2 mmol) and 2-(3-chlorophenylthio)benzenamine (1.00 g, 4.2 mmol) were used. The product was recrystallized from ethanol. Yield: 0.57 g (36%). ¹H NMR (300 MHz, CDCl₃): δ 12.95 (s, 1 H), 7.91–7.88 (m, 2 H), 7.47–7.15 (m, 11 H), 5.81 (s, 1 H), 1.95 (s, 3 H). ¹³C NMR (75 MHz, CDCl₃): δ 189.00, 161.53, 139.83, 138.97, 136.57, 134.73, 132.99, 131.35, 130.89, 130.69, 130.08, 129.32, 128.44, 128.15, 127.39, 127.12, 126.99, 126.83, 94.59, 19.99. IR (KBr): ν 3060, 1594, 1574, 1552, 1458, 1315, 1278, 1271, 748. Anal. Calcd for C₂₂H₁₈ClNOS (379.90): C 69.55, H 4.78, N 3.69. Found: C 69.60, H 4.64, N 3.43. MS (EI) (*m/z*): 379 (M⁺).

Synthesis of (Z)-3-(2-(2,6-dichlorophenylthio)phenylamino)-1-phenylbut-2-en-1-one (1e). The same procedure as that for the preparation of 1a was used. 1-Phenylbutane-1,3-dione (0.20 g, 1.2 mmol) and 2-(2,6-dichlorophenylthio)benzenamine (0.30 g, 1.1 mmol) were used. Yield: 0.34 g (73%). ¹H NMR (300 MHz, CDCl₃): δ 12.81 (s, 1 H), 7.96 (d, J = 7.2 Hz, 1 H), 7.94 (d, J =7.2 Hz, 1 H), 7.47-7.36 (m, 6 H), 7.30-7.10 (m, 3 H), 6.73-6.70 (m, 1 H), 5.96 (s, 1H), 2.01 (s, 3 H). ¹³C NMR (75 MHz, CDCl₃): δ 189.00, 163.02, 141.70, 139.87, 136.02, 134.02, 130.86, 130.83, 130.29, 128.95, 128.17, 127.84, 127.57, 127.18, 126.83, 126.22, 94.16, 20.08. IR (KBr): v 3420, 3060, 2920, 1600, 1578, 1553, 1317, 1283, 782, 750. Anal. Calcd for C₂₂H₁₇Cl₂NOS (414.35): C 63.77, H 4.14, N 3.38. Found: C 63.54, H 4.04, N 3.20. MS (EI) (m/z): 414 (M⁺).

Synthesis of (Z)-3-(2-(Perfluorophenylthio)phenylamino)-1-phenylbut-2-en-1-one (1f). The same procedure as that for the preparation of **1a** was used. 1-Phenylbutane-1,3-dione (0.89 g, 5.5 mmol) and 2-(perfluorophenylthio)benzenamine (1.46 g, 5.0 mmol) were used. Yield: 0.77 g (35%). ¹H NMR (300 MHz, CDCl₃): δ 12.86 (s, 1 H), 7.94–7.91 (m, 2 H), 7.46–7.42 (m, 3 H), 7.31–7.20 (m, 4 H), 5.95 (s, 1 H), 2.00 (s, 3 H). ¹³C NMR (75 MHz, CDCl₃): δ 189.28, 162.20, 139.60, 138.08, 131.08, 130.53, 128.42, 128.25, 128.06, 127.61, 127.15, 94.40, 19.96. ¹⁹F NMR (282 MHz, CDCl₃): δ –131.41 (d, *J* = 20.57 Hz, 2 F), -151.53 (t, *J* = 20.57 Hz, 1 F), -160.55 (t, *J* = 20.57 Hz, 2 F). IR (KBr): ν 3060, 1599, 1576, 1552, 1511, 1488, 1464, 1316, 1273, 1088, 980, 858, 751. Anal. Calcd for C₂₂H₁₄F₅NOS (435.41): C 60.69, H 3.24, N 3.22. Found: C 60.64, H 3.28, N 3.04. MS (ESI) (*m*/*z*): 436 (M + H⁺).

Synthesis of (*Z*)-1-Phenyl-3-(2-(propylthio)phenylamino) but-2-en-1-one (1g). The same procedure as that for the preparation of 1a was used. 1-Phenylbutane-1,3-dione (0.90 g, 5.5 mmol) and 2-(propylthio)benzenamine (0.93 g, 5.5 mmol) were used. Yield: 1.70 g (68%). ¹H NMR (300 MHz, CDCl₃): δ 12.86 (s,1 H), 7.96–7.94 (m, 2 H), 7.46–7.17 (m, 7 H), 5.94 (s, 1 H), 2.87 (t, *J* = 7.5 Hz, 2 H), 2.04 (s, 3 H), 1.71–1.64 (m, 2 H), 1.02 (t, *J* = 7.5 Hz, 3 H). ¹³C NMR (75 MHz, CDCl₃): δ 188.83, 162.45, 139.97, 137.53, 134.23, 130.83, 128.83, 128.17, 127.19, 126.85, 126.75, 125.89, 94.21, 34.64, 22.28, 20.23, 13.52. IR (KBr): ν 2962, 1598, 1574, 1548, 1317, 1280, 1195, 754. Anal. Calcd for C₁₉H₂₁NOS

Titanium Catalysts for Ethylene Polymerization

(311.44): C 73.27, H 6.80, N 4.50. Found: C 73.20, H 6.81, N 4.23. MS (EI) (*m*/*z*): 311 (M⁺).

Synthesis of (Z)-3-(2-(Isopropylthio)phenylamino)-1phenylbut-2-en-1-one (1h). The same procedure as that for the preparation of **1a** was used. 1-Phenylbutane-1,3-dione (1.00 g, 6.0 mmol) and 2-(isopropylthio)benzenamine (1.00 g, 6.2 mmol) were used. The product was purified by column chromatography on silica gel to give a yellow oil. Yield: 0.48 g (26%). ¹H NMR (300 MHz, CDCl₃): δ 12.94 (s, 1 H), 7.97–7.93 (m, 2 H), 7.49–7.42 (m, 4 H), 7.25-7.18 (m, 3H), 5.93 (s, 1 H), 3.41-3.37 (m, 1 H), 2.07 (s, 3 H), 1.30 (d, J = 6.9 Hz, 6 H). ¹³C NMR (75 MHz, CDCl₃): δ 188.67, 161.81, 139.95, 139.17, 132.57, 131.96, 130.75, 128.11, 127.10, 126.34, 126.20, 94.43, 37.50, 22.91, 20.34. IR (KBr): v 2980, 1598, 1577, 1436, 1320, 1280, 1066, 758. Anal. Calcd for C₁₉H₂₁NOS (311.44): C 73.27, H 6.80, N 4.50. Found: C 73.19, H 6.74, N 4.14. MS (EI) (*m/z*): 311 (M⁺).

Synthesis of (Z)-3-(2-(*tert***-Butylthio)phenylamino)-1phenylbut-2-en-1-one (1i). The same procedure as that for the preparation of 1a was used. 1-Phenylbutane-1,3-dione (1.84 g, 11.3 mmol) and 2-(***tert***-butylthio)benzenamine (1.81 g, 10.0mmol) were used. Yield: 1.37 g (42%). ¹H NMR (300 MHz, CDCl₃): δ 13.17 (s, 1 H), 7.98–7.94 (m, 2 H), 7.64 (dd, J = 1.2 Hz, 7.5 Hz, 1 H), 7.47–7.17 (m, 6 H), 5.93 (s, 1 H), 2.14 (s, 3 H), 1.32 (s, 9 H). ¹³C NMR (75 MHz, CDCl₃): δ 188.53, 160.52, 143.05, 139.82, 130.80, 129.64, 128.16, 127.20, 125.20, 125.02, 95.17, 47.86, 30.84, 20.82. IR (KBr): ν 3060, 2980, 1596, 1577, 1555, 1280, 1456, 1321, 759. Anal. Calcd for C₂₀H₂₃NOS (325.47): C 73.81, H 7.12, N 4.30. Found: C 73.73, H 7.07, N 3.95. MS (EI) (***m/z***): 325 (M⁺).**

Synthesis of (*Z*)-3-(2-(Octylthio)phenylamino)-1-phenylbut-2-en-1-one (1j). The same procedure as that for the preparation of **1a** was used. 1-Phenylbutane-1,3-dione (0.68 g, 4.2 mmol) and 2-(octylthio)benzenamine (1.00 g, 4.2 mmol) were used. The product was purified by column chromatography on silica gel to give a yellow oil. Yield: 0.48 g (30%). ¹H NMR (300 MHz, CDCl₃): δ 12.86 (s, 1 H), 8.00–7.90 (m, 2 H), 7.44–7.16 (m, 7 H), 5.94 (s, 1 H), 2.87 (t, *J* = 7.5 Hz, 2 H), 2.04 (s, 3 H), 1.67–1.62 (m, 2 H), 1.41–1.24 (m, 10 H), 0.86 (t, *J* = 7.2 Hz, 3 H). ¹³C NMR (75 MHz, CDCl₃): δ 188.79, 162.42, 139.94, 137.42, 134.35, 130.83, 128.65, 128.16, 127.18, 126.84, 126.71, 125.81, 94.19, 32.61, 31.75, 29.12, 28.90, 28.85, 22.61, 20.23, 14.08. IR (KBr): ν 3060, 2953, 2926, 2854, 1599, 1577, 1553, 1464, 1317, 1281, 1064, 746, 688. Anal. Calcd for C₂₄H₃₁NOS (381.57): C 75.54, H 8.19, N 3.67. Found: C 75.51, H 8.08, N 3.53. MS (ESI) (*m*/*z*): 382 (M + H⁺).

Synthesis of (*Z*)-3-(2-Phenoxyphenylamino)-1-phenylbut-2-en-1-one (2a). The same procedure as that for the preparation of 1a was used. 1-Phenylbutane-1,3-dione (1.75 g, 10.8 mmol) and 2-phenoxybenzenamine (2 g, 10.8 mmol) were used. Yield: 2.03 g (57%). ¹H NMR (300 MHz, CDCl₃): δ 12.83 (s, 1 H), 7.88 (d, *J* = 7.8 Hz, 1 H), 7.85 (d, *J* = 7.5 Hz, 1 H), 7.43–7.00 (m, 12 H), 5.87 (s, 1 H), 2.15 (s, 3 H). ¹³C NMR (75 MHz, CDCl₃): δ 188.70, 162.48, 156.58, 151.33, 140.07, 130.73, 130.05, 129.72, 128.15, 127.06, 127.01, 126.90, 123.61, 123.44, 119.22, 118.80, 94.46, 20.30. IR (KBr): ν 3060, 2940, 1599, 1576, 1553, 1489, 1318, 1283, 747, 689. MS (ESI) (*m*/*z*): 330 (M + H⁺). HRMS (MALDI/DHB): 330 (C₂₂H₂₀NO₂⁺).

Synthesis of (Z)-3-(2-(2,6-Dimethylphenoxy)phenylamino)--1-phenylbut-2-en-1-one (2b). The same procedure as that for the preparation of **1a** was used. 1-Phenylbutane-1,3-dione (0.76 g, 4.7 mmol) and 2-(2,6-dimethylphenoxy)benzenamine (1.00 g, 4.7 mmol) were used. Yield: 1.51 g (90%). ¹H NMR (300 MHz, CDCl₃): δ 13.02 (s, 1 H), 7.94–7.91 (m, 2 H), 7.45–7.40 (m, 3 H), 7.29–7.26 (m, 1 H), 7.10–6.98 (m, 5 H), 6.44 (dd, J = 1.5, 7.8 Hz, 1 H), 5.96 (s, 1 H), 2.24 (s, 3 H), 2.15 (s, 6 H). ¹³C NMR (75 MHz, CDCl₃): δ 188.74, 162.70, 151.30, 151.04, 140.09, 131.19, 130.70, 128.97, 128.14, 127.34, 127.07, 126.89, 126.42, 125.23, 121.28, 113.42, 94.42, 20.48, 16.31. IR (KBr): ν 3060, 1603, 1576, 1552, 1477, 1323, 1282, 1187, 760. Anal. Calcd for $C_{24}H_{23}NO_2$ (357.44): C 80.64, H 6.49, N 3.92. Found: C 80.59, H 6.37, N 3.70. MS (ESI) (*m*/*z*): 358 (M + H⁺).

Synthesis of (Z)-3-(2-(2,6-Diisopropylphenoxy)phenylamino)--1-phenylbut-2-en-1-one (2c). The same procedure as that for the preparation of **1a** was used. 1-Phenylbutane-1,3-dione (2.11 g, 13.0 mmol) and 2-(2,6-diisopropylphenoxy)benzenamine (3.50 g, 13.0 mmol) were used. Yield: 3.74 g (70%). ¹H NMR (300 MHz, CDCl₃): δ 12.98 (s, 1 H), 7.94–7.90 (m, 2 H), 7.43–7.19 (m, 7 H), 7.04–6.96 (m, 2 H), 6.44 (dd, J = 1.5, 8.4 Hz, 1 H), 5.95 (s, 1 H), 3.02–2.93 (m, 2 H), 2.20 (s, 3 H), 1.20 (d, J = 7.2 Hz, 6 H), 1.09 (d, J = 7.2 Hz, 6 H). ¹³C NMR (75 MHz, CDCl₃): δ 188.61, 162.81, 153.07, 148.55, 141.52, 140.26, 130.66, 128.16, 127.22, 127.07, 126.92, 126.83, 125.96, 124.35, 121.24, 113.77, 94.20, 27.13, 24.24, 22.37, 20.33. IR (KBr): ν 3060, 2961, 1606, 1576, 1558, 1476, 1322, 1282, 1218, 760, 742, 705. Anal. Calcd for C₂₈H₃₁NO₂ (413.24): C 81.32, H 7.56, N 3.39. Found: C 81.31, H 7.44, N 3.30. MS (ESI) (*m/z*): 414 (M + H⁺).

(Z)-3-(2-(Isopropylthio)ethylamino)-1-Synthesis of phenylbut-2-en-1-one (3). To a solution of 1-phenylbutane-1,3dione (3.24 g, 20.0 mmol) and 2-(isopropylthio)ethanamine (2.38 g, 20.0 mmol) in xylene (30 mL) was added 4-methylbenzenesulfonic acid hydrate (0.11 g, 0.6 mmol) at room temperature. The flask was equipped with a water separator. After refluxing for 2 days, the solvent was removed by vaccum, and the residue was purified by column chromatography on silica gel to give a yellow oil. Yield: 0.60 g (11%). ¹H NMR (300 MHz, CDCl₃): δ 11.51 (s, 1 H), 7.88-7.84 (m, 2 H), 7.39-7.36 (m, 3 H), 5.67 (s, 1 H), 3.48-3.41 (m, 2 H), 3.00-2.88 (m, 1 H), 2.71 (t, J = 7.2 Hz, 2 H), 2.02 (s, 3 H), 1.25 (d, J = 7.2 Hz, 6 H). ¹³C NMR (75 MHz, CDCl₃): *δ* 187.61, 164.06, 140.07, 130.24, 127.89, 126.66, 92.19, 43.22, 35.04, 30.48, 23.21, 19.23. IR (KBr): v 2960, 2918, 2860, 1601, 1550, 1443, 1294, 1085, 1065, 740, 675. MS (EI) (m/z): 264 $(M + H^+)$. HRMS (MALDI/DHB): 264 (C₁₅H₂₁NOS⁺).

Synthesis of (Z)-1,1,1-Trifluoro-4-(2-(phenylthio)phenylamino)pent-3-en-2-one (4). To a solution of 1,1,1-trifluoropentane-2,4-dione (0.99 g, 6.4 mmol) and 2-(phenylthio)benzenamine (1.92 g, 9.5 mmol) in dichloromethane (4 mL) were added 4 Å molecular sieves (0.40 g) at room temperature. After stirring for 3 days, the 4 Å molecular sieves were filtered and the solvent was removed under vacuum. The residue was purified by column chromatography on silica gel to give the product as an oil. Yield: 0.32 g (15%). ¹H NMR (300 MHz, CDCl₃): δ 12.35 (s, 1 H), 7.34–7.17 (m, 9 H), 5.44 (s, 1 H), 1.92 (s, 3 H). ¹³C NMR (75 MHz, CDCl₃): δ 176.53, 167.93, 136.39, 134.25, 132.97, 132.34, 131.83, 129.41, 128.30, 128.09, 127.70, 127.25, 115.47, 90.81 (t, J = 5.4 Hz), 19.92. ¹⁹F NMR (282 MHz, CDCl₃): δ -77.17 (s, 3 F). IR (KBr): ν 3155, 2925, 2852, 1620, 1590, 1565, 1467, 1439, 1428, 1292, 1241, 1062, 861, 753, 734. Anal. Calcd for C₁₇H₁₄F₃NOS (337.36): C 60.52, H 4.18, N 4.15. Found: C 60.68, H 4.15, N 3.95. MS (ESI) (m/z): $338 (M + H^+).$

Synthesis of (*Z*)-1,3-Diphenyl-3-(2-(propylthio)ethylamino)prop-2-en-1-one (5). The same procedure as that for the preparation of **3** was used. 1,3-Diphenylpropane-1,3-dione (2.52 g, 11.2 mmol), 2-(propylthio)ethanamine (1.34 g, 11.2 mmol), and 4-methylbenzenesulfonic acid hydrate (0.064 g, 0.34 mmol) were used. Yield: 2.80 g (77%). ¹H NMR (300 MHz, CDCl₃): δ 11.46 (s, 1 H), 7.91 (d, *J* = 7.8 Hz, 1 H), 7.88 (d, *J* = 7.2 Hz, 1 H), 7.47–7.39 (m, 8 H), 5.78 (s, 1 H), 3.43–3.36 (m, 2 H), 2.63 (t, *J* = 7.2 Hz, 2 H), 2.36 (t, *J* = 7.5 Hz, 2 H), 1.54–1.47 (m, 2H), 0.92 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 188.54, 166.34, 140.03, 135.38, 130.73, 129.46, 128.53, 128.12, 127.66, 127.01, 93.80, 44.24, 33.98, 32.56, 22.80, 13.34. IR (KBr): ν 3059, 2960, 2927, 2870, 1595, 1569, 1480, 1331, 1296, 1225, 1143, 1057, 749, 692. Anal. Calcd for C20H23NOS (325.47): C 73.81, H 7.12, N 4.30. Found: C 73.96, H 7.17, N 4.20. MS (ESI) (*m*/*z*): 326 (M + H⁺).

(Z)-4-(2-(Phenylthio)phenylamino)pent-Synthesis of 3-en-2-one (6). To a solution of pentane-2,4-dione (0.30 g, 3.0 mmol) and 2-(phenylthio)benzenamine (0.40 g, 2.0 mmol) in dichloromethane (10 mL) was added anhydrous magnesium sulfate (2.50 g) at room temperature. After stirring for 4 days, the magnesium sulfate was filtered and the solvent was removed under vacuum. The residue was purified by column chromatography on silica gel to give the product as an oil. Yield: 0.39 g (68%). ¹H NMR (300 MHz, CDCl₃): δ 12.34 (s, 1 H), 7.35–7.26 (m, 5 H), 7.19–7.11 (m, 4 H), 5.15 (s, 1 H), 2.09 (s, 3 H), 1.84 (s, 3 H). ¹³C NMR (75 MHz, CDCl₃): δ 196.34, 159.95, 137.83, 133.68, 132.36, 131.14, 129.21, 128.92, 127.71, 127.17, 126.85, 126.66, 97.77, 29.15, 19.50. IR (KBr): v 3450, 3058, 2960, 1575, 1500, 1355, 1275, 1186, 1024, 751. Anal. Calcd for C₁₇H₁₇NOS (283.10): C 72.05, H 6.05, N 4.94. Found: C 72.10, H 6.02, N 4.78. MS (EI) (m/z): 283 (M⁺).

(Z)-1,3-Diphenyl-3-(2-(phenylthio)phenyl-Synthesis of amino)prop-2-en-1-one (7). To a solution of 1,3-diphenylpropane-1,3-dione (2.24 g, 10.0 mmol) and 2-(phenylthio)benzenamine (2.01 g, 10.0 mmol) in xylene (30 mL) was added 4-methylbenzenesulfonic acid hydrate (0.57 g, 3 mmol) at room temperature. The flask was equipped with a water separator. After refluxing for 2 days, the solvent was removed by vaccum, and the residue was recrystallized from ethanol to give a yellow powder as the desired product. Yield: 2.18 g (53%). ¹H NMR (300 MHz, CDCl₃): δ 12.91 (s, 1 H), 7.98 (d, J = 5.4 Hz, 2 H), 7.45–7.18 (m, 14 H), 6.89 (s, 2 H), 6.42 (d, J = 6.6 Hz, 1 H), 6.08 (s, 1 H). ¹³C NMR (75 MHz, CDCl₃): δ 189.59, 160.50, 139.94, 139.68, 135.87, 134.50, 132.95, 131.91, 131.31, 129.61, 129.12, 128.91, 128.44, 128.27, 128.03, 127.53, 127.41, 127.36, 124.90, 124.46, 97.92. IR (KBr): v 3051, 1545, 1480, 1438, 1330, 1282, 1207, 1050, 1022, 781, 754, 686. Anal. Calcd for C₂₇H₂₁NOS (407.53): C 79.57, H 5.19, N 3.44. Found: C 79.23, H 5.18, N 3.13. MS (EI) (m/z): 407 (M⁺).

Synthesis of (Z)-3-(2-(Diethylamino)ethylamino)-1,3diphenylprop-2-en-1-one (8). The same procedure as that for the preparation of **3** was used. 1,3-Diphenylpropane-1,3-dione (5.83 g, 26.0 mmol), N,N-diethylethane-1,2-diamine (3.00 g, 26.0 mmol), and 4-methylbenzenesulfonic acid hydrate (0.15 g, 0.78 mmol) were used. Yield: 1.85 g (22%). ¹H NMR (300 MHz, CDCl₃): δ 11.33 (s, 1 H), 7.90-7.87 (m, 2 H), 7.47-7.36 (m, 8 H), 5.75 (s, 1 H), 3.30-3.24 (m, 2 H), 2.61-2.56 (m, 2 H), 2.51-2.44 (m, 4 H), 0.97 (t, J = 7.2 Hz, 6 H). ¹³C NMR (75 MHz, CDCl₃): δ 188.28, 166.60, 140.38, 135.79, 130.56, 129.35, 128.47, 128.11, 127.67, 127.00, 93.46, 53.13, 47.24, 43.12, 11.70. IR (KBr): v 3060, 2968, 2933, 1596, 1583, 1569, 1481, 1330, 1057, 746, 693. Anal. Calcd for C₂₁H₂₆N₂O (322.44): C 78.22, H 8.13, N 8.69. Found: C 78.56, H 7.85, N 8.43. MS (ESI) (m/z): 323 (M + H⁺).

Synthesis of [(1Z,3Z)-1,3-Diphenyl-3-(2-(propylthio)ethylimino)prop-1-en-1-olate]Ti(IV)Cl₃ (11). To a solution of TiCl₄(1.64 g, 8.7 mmol) in toluene (30 mL) at -78 °C was addeddropwise a solution of ligand 5 (2.17 g, 6.7 mmol) in toluene (30mL) over 15 min, and the resulting mixture was allowed to warmto room temperature and stirred for 3 h. After removing the solventunder reduced pressure, the brown-red solid was collected and dried *in vacuo* to give complex **11**. Yield: 3.08 g (97%). ¹H NMR (300 MHz, CDCl₃): δ 7.82 (d, J = 7.2 Hz, 2 H), 7.52–7.29 (m, 8 H), 6.39 (s, 1 H), 4.14–4.01 (m, 2 H), 3.48–3.38 (m, 1 H), 3.24–3.18 (m, 1 H), 3.00–2.91 (m, 1 H), 2.76–2.71 (m, 1 H), 1.99–1.89 (m, 2 H), 1.13 (t, J = 7.5 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 170.75, 169.78, 137.58, 132.01, 129.82, 129.34, 128.89, 127.14, 125.75, 109.51, 57.34, 41.49, 36.37, 21.76, 13.54. Anal. Calcd for C₂₀H₂₂Cl₃NOSTi (478.69): C 50.18, H 4.63, N 2.93. Found: C 50.04, H 4.65, N 2.75.

Typical Procedure for Ethylene Polymerization by a One-Pot Approach. (using ligand 5 as a representative example). Under a 1 atm ethylene atmosphere, to a solution of MMAO (1.6 mL, 1.9 M in toluene) in toluene (50 mL, saturated with ethylene) was added the *in situ* mixture of Ti(THF)₂Cl₄ and enamine 5 (0.30 mL, 10 μ mol/mL in toluene, 1:1, molar ratio) at 30 °C. The polymerization was carried out for 10 min and then quenched with concentrated HCl in ethanol (400 mL, HCl/EtOH, 1:20, v/v). The precipitated polymer was collected, washed with ethanol, and then dried overnight in a vacuum oven at 50 °C to constant weight.

Typical Procedure for Ethylene Polymerization. (using complex **11** as a representative example). Under a 1 atm ethylene atmosphere, to a solution of MMAO (1.6 mL, 1.9 M in toluene) in toluene (50 mL, saturated with ethylene) was added a solution of complex **11** (3 μ mol, 3 μ mol/mL in toluene) at 30 °C. The polymerization was carried out for 10 min and then quenched with concentrated HCl in ethanol (400 mL, HCl/EtOH, 1:20, v/v). The precipitated polymer was collected, washed with ethanol, and then dried overnight in a vacuum oven at 50 °C to constant weight.

Typical Procedure for Ethylene and 1-Hexene Copolymerization by a One-Pot Approach. Under a 1 atm ethylene atmosphere, to a solution of MMAO (1.6 mL, 1.9 M in toluene) and the desired amount of 1-hexene in toluene (50 mL, saturated with ethylene) was added the *in situ* mixture of Ti(THF)₂Cl₄ and enamine **5** (0.30 mL, 10 μ mol/mL in toluene, 1:1, molar ratio) at 30 °C. The polymerization was carried out for 10 min and then quenched with concentrated HCl in ethanol (400 mL, HCI/EtOH, 1:20, v/v). The precipitated polymer was collected, washed with ethanol, and then dried overnight in a vacuum oven at 50 °C to constant weight.

Acknowledgment. We are grateful for the financial support from the Natural Sciences Foundation of China, the Major State Basic Research Development Program (Grant No. 2006CB806105), the Science and Technology Commission of Shanghai Municipality, and Chinese Academy of Sciences.

Supporting Information Available: ¹H NMR and ¹³CNMR characterization data for all new compounds and the polymers, and X-ray crystallographic data in CIF format of complex **11**. This material is available free of charge via the Internet at http://pubs.acs.org.

OM800302F