•综述与进展•

碲、硒叶立德在立体选择性小环化反应中的应用

韩汛"叶龙武"孙秀丽*,6

("南京大学强化部 南京 210093)

(^b中国科学院上海有机化学研究所金属有机化学国家重点实验室 上海 200032)

摘要 概述了碲及硒叶立德在立体选择性小环化反应中的应用,包括环丙烷化反应、环氧化反应、氮杂环丙烷化反应 等.

关键词 叶立德;环丙烷化;环氧化;氮杂环丙烷化;立体选择性

Cyclization Reactions for the Stereoselective Synthesis of Small Ring Compounds via Selenonium and Telluronium Ylides

Han, Xun^a Ye, Longwu^b Sun, Xiuli^{*,b}

(^a Department for Intensive Instruction, Nanjing University, Nanjing 210093)

(^b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032)

Abstract Recent progress in the application of selenonium and telluronium ylide in the stereoselective formation of three-membered ring compounds, such as cyclopropanation, epoxidation, and aziridination are summarized.

Keywords ylide; cyclopropanation; epoxidation; aziridination; stereoselectivity

自从1953年Wittig等^[1]报道了利用膦叶立德将羰基 化合物转化为烯基化合物的反应后,人们开始意识到叶 立德在有机合成中的重要价值.于是,叶立德化学迅速 地发展起来^[2].时至今日,除了叶立德的烯基化反应^[2,3] 外,人们还发展了环丙烷化^[4]、环氧化^[5]和氮杂环丙烷 化^[6]这三种叶立德小环化反应以及[2,3]-重排^[7]和[1,2]-重排^[8]等重排反应.最近,人们对于叶立德在合成其它 环状化合物中的应用也进行了探索^[9].

硒和碲这两种元素的叶立德比相应的膦、硫叶立德 具有更高的活性和亲核性^[2a,2d,2e,5].相对于硫、膦叶立德 而言,目前人们对硒、碲叶立德的研究^[2a,10]仍旧比较少, 但近些年来,硒、碲叶立德已经在有机合成中得到了很 大的应用与发展,特别是在制备合成上非常有用的乙烯 基取代的小环化合物方面,展示了优异的立体选择性.

1 叶立德环丙烷化反应

环丙烷由于其特殊的张力结构,容易发生开环或扩 环反应而得到各种类型的合成中间体^[11],成为有机合成 中非常有用的砌块.作为一个基本结构单元,环丙烷结 构广泛存在于许多天然和非天然的具有生物活性的分 子中^[12],并发挥着十分重要的作用.因此,发展高选择 性地合成环丙烷衍生物的方法已受到人们广泛的重视. 到目前为止,人们已经发展了多种有效的环丙烷衍生物 的合成方法^[4],叶立德途径^[4,13]是其中应用比较多的一 种.

本文将系统地介绍硒、碲这两种叶立德在立体选择性的 小环化反应中的研究进展.

 ^{*} E-mail: xlsun@mail.sioc.ac.cn
 Received April 18, 2008; revised July 17, 2008; accepted August 29, 2008.
 国家自然科学基金(No. 20772139)资助项目.

叶立德可以看成是带有特殊离去基团的碳负离 子^[14],当它和贫电子的碳碳不饱和键(Michael 受体)反 应时,一般认为首先是叶立德碳负离子对 Michael 受体 加成,生成内盐(betaine),然后发生分子内取代,杂原子 化合物 ML,离去,同时得到环化产物(Scheme 1).

Scheme 1

关于硫^[2b,15,16]叶立德环丙烷化反应的研究已取得了 较好的结果.近年来的研究表明,碲叶立德也可以很好 地应用于不饱和化合物的环丙烷化反应,而且由于碲醚 的亲核性,利用碲叶立德还可以实现催化的环丙烷化反 应.硒叶立德在环丙烷化反应中的应用到目前为止还鲜 有报道,因此,本文将主要介绍近年来碲叶立德在环丙 烷化反应中的一些研究进展.

1.1 碲叶立德环丙烷化反应

1993 年, 黄耀曾等^[17]首次报道了利用末端硅基取 代的烯丙基碲盐1在碱的作用下现场产生碲叶立德并与 *α*,β-不饱和酯的反应. 该反应以中等到良好的产率得到 多取代的环丙烷衍生物 2 (Scheme 2).

Scheme 2	2
----------	---

碱对该环丙烷化反应有非常重要的影响.当用 *t*-BuOK 和二异丁基胺基锂(LDA)时,反应只能达到中 等到良好的产率;用 2,2,6,6-四甲基哌啶锂(LTMP)作碱 时,反应以最高 97%的产率得到环丙烷化产物 **3** (Eq. 1).

对于 β -芳基取代的 α , β -不饱和酯的底物,反应能够

以优异的非对映选择性得到几乎单一的1,2-反式环丙烷 产物;当底物为巴豆酸甲酯或甲基丙烯酸甲酯时,反应 只能得到两个非对映异构体接近1:1的混合物.

1.2 非对映选择性的调控

多取代的环丙烷会产生顺反异构体,因此,实现环 丙烷产物的非对映异构体选择性合成已成为一个很受 关注的问题.针对环丙烷化反应的非对映选择性调控, 黄耀曾以及唐勇等^[2a,18,19]进行了深入的研究,分别通过 碱、反应温度、溶剂、添加剂等条件的改变方便地实现 了环丙烷化合物的非对映选择性合成.

体系中的 Lewis 酸对反应的非对映选择性的影响非 常明显^[18](表 1). 例如, 在锂离子存在的条件下, 反应生 成以 4 为主的产物(最高>99/1); 用 KN(SiMe₃)₂ 作碱时, 反 应 可 以 87% 的 产 率 得 到 异 构 体 4'; 当 使 用 NaN(SiMe₃)₂ 时, 产物中异构体 4 与 4'的比例几乎相同 (Entries 1~3, 表 1). 因此通过碱的选择就可以很好地 实现对反应非对映选择性的调控.

表1 Lewis 酸对碲叶立德环丙烷化反应的非对映选择性的影响

Table 1 Effect of Lewis acids on the stereochemistry of the cyclopropanation reactions via telluronium ylide

碱的用量也影响产物的非对映选择性以及产率.例如,在碲盐1与β-对甲基苯基丙烯酸乙酯的环丙烷化反应中,随着 KN(SiMe₃)₂用量的增加,反应的非对映选择性以及产率均明显下降(Eq. 2).

改变反应的温度也可以实现对产物的非对映选择 性的调控(表 2). 例如,同样用 LTMP 作碱的情况下,在 0 ℃,肉桂酸甲酯和碲盐 1 反应生成 1,2-顺式的产物 6'; 降低反应的温度至-78 ℃,该反应以 93%的产率选择 性地生成其非对映异构体 1,2-反式的环丙烷产物 6 (Entries 1~2,表 2). 对于脂肪族底物如巴豆酸酯而言,这 种调控作用并不理想(Entries 3~6,表 2).

表 2 温度对碲叶立德环丙烷化反应的非对映选择性的影响 Table 2 Effect of temperature on the stereochemistry of the telluronium ylide cyclopropanation reactions

THF, DMF, hexane, toluene, DME 等溶剂虽然对反应的非对映选择性和产率有一定的影响, 但总体上效果不是很明显.

对于 Lewis 酸, 特别是锂离子对环丙烷化反应中非 对映选择性的调控作用, 黄耀曾等^[18]提出了可能的机 理解释(Schemes 3, 4):当用 KN(SiMe₃)₂ 作碱时,由于基 团的相互排斥作用, 过渡态 TS-2 的能量高于过渡态 TS-1, 因此在 KN(SiMe₃)₂ 作碱的情况下 7 是主要产物 (Scheme 3);而当用 Li⁺/NaN(SiMe₃)₂ 作碱时(Scheme 4), 体系中的锂离子与羰基氧和叶立德碳负离子存在配位 作用, 反应经历一个稳定的六元环过渡态, 过渡态 TS-3 由于大位阻基团 *i*-Bu₂Te 处于 *e* 键而比 TS-4 更稳定, 因 此反应产物是以 8 为主的产物.

基于这个机理研究,唐勇等^[19]认为既然锂离子能 通过与底物的配位作用而实现对产物非对映选择性的 控制,那么如果在反应体系中加入合适的添加剂破坏过 渡态中锂离子与反应底物之间的作用,就有可能改变优

Scheme 4

势过渡态从而改变产物构型.因此,唐勇、戴立信等^[19] 发展了通过选择合适的添加剂实现非对映选择性调控的方法(表 3).如表中所示,以 LDA 作碱时,在体系中没有外加配体存在的条件下,反应以 83%的产率,高于 99/1 的非对映选择性得到 1,2-反式产物 4,当体系中加入与锂离子具有强配位作用的六甲基磷酰胺(HMPA)或 12-冠-4时,反应则以高的选择性和产率得到 1,2-顺式环丙烷产物 4';六甲基亚磷酸三酰胺(HMPT)、四甲基乙二

胺(TMEDA)对反应的非对映选择性几乎没有影响. 这样,在LDA 作碱的条件下,仅通过HMPA 或 12-冠-4的加入与否就方便地实现了一对非对映异构体 4 和 4 的选择性合成.

表 3 添加剂对环丙烷化反应的非对映选择性的影响 **Table 3** Effect of additives on the stereochemistry of cyclopropanation reactions

Entry	配体(2 equiv.)	比例(4:4')	产率/%
1	—	>99:1	83
2	HMPT	>99:1	80
3	TMEDA	>99:1	80
4	PMDETA	85:15	94
5	HMPA	10:90	73
6	12-crown-4	8:92	71

这种调控作用具有很好的普适性,通过这种方式, 一系列β-芳基和β-烷基取代的α,β-不饱和酯和酰胺都以 高的非对映选择性实现了环丙烷化反应从而完成了一 对非对映异构体的合成.

1.3 碲叶立德不对称环丙烷化反应

高对映选择性地合成多取代官能团化的环丙烷衍 生物一直是有机化学领域里的一个热门课题,人们已经 发展了许多合成官能团化的光学活性环丙烷衍生物的 方法^[4,15,20].不对称的叶立德环丙烷化反应由于其转移 基团丰富、条件温和,成为其中很好的一种方法.

2001年,唐勇小组^[21]将手性基团引入*α*,β-不饱和酯 中并利用手性辅基的诱导效应,在碱的作用下,通过碲 盐1与(-)-8-苯基薄荷醇衍生的 Michael 受体反应顺利 得到了手性的烯基环丙烷衍生物 9/9' (Eq. 3).通过水解 反应,手性辅基可以非常容易地实现回收.

2003 年, 唐勇等^[22]又合成了具有 C_2 对称性的烯丙 基碲叶立德前体—— C_2 对称的手性碲盐 10, 并成功将 该碲盐应用于不对称叶立德环丙烷化反应(Eq. 4).

在 LTMP/HMPA 的作用下, 10 与 α,β-不饱和酯、α,β-不饱和酰胺反应以优秀的对映选择性和非对映选择性 得到了 1,2-顺式环丙烷衍生物 11, 产物的对映选择性过 量最高达到 97% ee. 巴豆酸甲酯同样也可以高选择性 地实现环丙烷化反应(94% ee), 但是产率相对于肉桂酸 底物明显降低. 将反应中的碱由 LTMP/HMPA 换为 LDA/LiBr 后,反应的非对映选择性发生了翻转, 1,2-反 式环丙烷 11'成为主要产物,反应的对映选择性略有下 降. 当底物为 α,β-不饱和酰胺时,在两种不同的反应条 件下,反应可以分别高对映选择性地得到单一的 1,2-顺 式和 1,2-反式烯基环丙烷产物 11/11' (Eq. 4).

2005年,唐勇等^[23]在研究 C₂ 对称的手性碲盐 10 与 α,β-不饱和亚胺的反应中发现,在碱的作用下,使用等 物质的量的碲盐和 α,β-不饱和亚胺时,反应能够以中等 到良好的产率、优秀的对映选择性(>95% ee)和非对映 选择性(*dr*>36/1)得到 1,2-顺式烯基环丙基甲醛衍生物 12. 尽管该反应对芳香族底物可以取得很好的结果,但 是脂肪族底物不能发生这个反应(表 4).

1.4 催化的碲叶立德环丙烷化反应

1994 年, 黄耀曾等^[24]报道了首例经碲叶立德途径 实现的催化的环丙烷化反应. 他们采用"一锅法", 以 20 mol%的 *i*-Bu₂Te 为催化剂, THF 和微量的水为溶剂, 碳酸铯为碱, 在 50 ℃的条件下, 由三甲硅基烯丙基溴 和 α,β-不饱和酮以良好的产率和优秀的非对映选择性得 到了 1,2-顺式烯基环丙烷. 产率与使用等物质的量的 *i*-Bu₂Te时相当,但是继续降低催化剂的用量至10 mol% 时,反应的产率迅速降低至 30% (Eq. 5).

表 4 碲盐 10 与 α , β -不饱和亚胺的环丙烷化反应 Table 4 Cyclopropanation reactions between telluronium 10 with α , β -unsaturated imine

该反应首先是 *i*-Bu₂Te 与三甲硅基烯丙基溴反应生 成碲盐, 碲盐在碱的作用下生成相应的叶立德, 随后现 场生成的碲叶立德与 *α*,*β*-不饱和酮作用生成环丙烷化合 物并释放一分子 *i*-Bu₂Te, 再生的 *i*-Bu₂Te 可以继续与溴 化物反应实现催化循环(Scheme 5).

Scheme 5

唐勇等^[22]用他们小组发展的 C₂ 对称性结构的手性 碲化合物,尝试了催化的不对称环丙烷化反应.在 20 mol%的碲盐 10 的存在下,烯丙基溴化物与查尔酮类化 合物反应,高产率、高对映选择性地得到了相应的环丙 烷化产物 13/13',取得了好的结果(Eq. 6).

2 经碲、硒叶立德途径实现的环氧化反应

官能团化的环氧化合物在有机合成中是一类非常 重要的功能砌块,在许多医药和生物分子的合成过程中 有着重要的作用^[25].因此,该类化合物的合成方法历来 受到人们的关注,其中,有关通过叶立德(包括硫、硒、 碲等叶立德)途径实现的环氧化反应的研究也有很大的 发展^[2a,2b,5],本文中我们着重讨论碲、硒叶立德环氧化反 应的最新进展.

2.1 通过碲叶立德途径合成多取代环氧化合物

2.1.1 立体选择性的碲叶立德环氧化反应

尽管 Johnson 等^[26]于 1961 年就报道了由硫叶立德 实现的环氧化反应,首例关于碲叶立德的环氧化反应的 报道直到 1983 年才出现. 1983 年, Osuka 等^[27]通过半稳 定的碲叶立德与醛反应得到了烯基环氧乙烷衍生物(Eq. 7).

$$R_{2}Te^{\dagger}CH_{2}CH=CH_{2}Br^{-} \xrightarrow{(1) t-BuOK} O_{R^{1}} O_{T^{2}} O_{T^{2$$

在该反应中,产物的非对映选择性较差.虽然对于 苯甲醛、对甲氧基苯甲醛、胡椒醛等几个底物,*cis/trans* 的比值能达到 85/15 左右,但对于其它一些底物, *cis/trans* 的比值多处于 45/55 与 75/25 之间.

之后, 黄耀曾小组^[28]又对该反应进行了深入的研究. 1992 年, 他们利用碲盐 1 与醛反应, 以中等的非对 映选择性高产率地得到了烯基环氧乙烷衍生物, 产物以 顺式为主. 用碲盐 14 代替 1, 反应的非对映选择性显著 提高, 最高能够以99/1的比例得到顺式炔基取代的环氧 乙烷衍生物(表 5). 该反应不仅适用于芳香醛, 对于脂肪 醛同样可以取得很好的结果. 例如环己基甲醛与碲盐 14 在碱的作用下以99/1 的非对映选择性, 86%的产率得 到相应的顺式环氧化产物.

半稳定的碲叶立德能发生环氧化反应,不稳定碲叶 立德也能够与醛、酮反应得到环氧化合物^[29],产率为中 等到良好(Scheme 6).

表5 碲盐1和14 与醛的环氧化反应

314

Table 5Epoxidation reactions between telluronium 1 and 14with aldehydes

Scheme 6

2005 年黄志真等^[30]报道了首例利用 C₂对称性的碲 叶立德诱导的不对称环氧化反应. 与碲盐 1 和 14 不同, 在碱的作用下, 碲盐 16 和 18 与醛反应主要得到反式的 环氧化合物. 烯丙基手性碲盐 16 和醛反应只能以低到 中等的产率和对映选择性得到环氧产物(Eq. 8). 相对于 16, 苄基手性碲盐 18 的环氧化反应的产率、对映选择性 及非对映选择性都更好, 反应只得到单一的反式产物, 环氧化合物的对映体过量最高可以达到 99% ee(表 6).

2.1.2 催化碲叶立德环氧化反应

与经叶立德途径实现的催化的环丙烷化反应相类 似,用碲叶立德也可以通过催化途径实现羰基化合物的 环氧化. 1990年,黄耀曾等^[31]将相转移技术运用到这一 催化反应中,实现了催化量的反应(Eq. 9). 但是催化剂 的用量最低只能为 20 mol%,继续降低催化剂用量会导 致反应的产率和顺反选择性降低. 表6 手性碲盐18 与醛的不对称环氧化反应

Table 6Enantioselectively epoxidation between chiral tellu-ronium 18 and aldehydes

Ar	产率/%	trans/cis	ee/% (trans)
C ₆ H ₅	72	98/2	99
$2-ClC_6H_4$	78	99/1	95
$4-ClC_6H_4$	92	92/8	96
$2,4-Cl_2C_6H_3$	82	100/0	93
$3-FC_6H_4$	75	100/0	95
$4-FC_6H_4$	81	100/0	97
4-CH ₃ OC ₆ H ₄	64	99/1	91
RCHO + Br	20 mol% <i>i</i> THF/Et ₂	G-Bu₂Te, Cs₂CO₃ O/H₂O, 50 °C	R 0 0 (9)

Yields 54% ~ 87% cis/trans: 71/29 ~ 53/47

利用碲盐1,21和23,唐勇等^[32]不仅高产率地实现 了催化的醛的环氧化反应, 而且对于芳香醛, 催化剂的 用量首次降低至2 mol%; 脂肪族底物在20 mol%催化剂 的用量下也可以高产率地实现环氧化(Scheme 7). 20 和 22 是唐勇等^[3k,3n]分别以聚乙二醇(PEG)和季戊四醇衍生 的聚合物作为载体设计合成的一类高分子化的有机碲 化合物. 在 20 或 22 的用量 2 mol%的情况下就可以高效 地实现羰基化合物的烯基化反应. 但是在催化的醛的环 氧化反应中,20和22的催化效果均不理想,碲化合物20 几乎没有催化活性;在10 mol%碲盐22 的存在下,对氯 苯甲醛和烯丙基溴也只能以69%的产率实现环氧化.然 而, 无论是利用小分子碲盐 1, 21 和 23, 还是高分子化 的碲化合物 22, 该催化反应都几乎只能得到顺式产物 与反式产物接近 1:1 的混合物(表 7). 在该反应中, 醇 溶剂的使用非常重要,可能是由于使用醇溶剂时醇羟基 通过氢键活化了醛的缘故.

表 7 催化剂对催化叶立德环氧化反应的影响 Table 7 Effects of various catalysts on the catalytic ylide epoxidation

ſ	RCHO	+ Br	R ¹ -	cat. ► Cs ₂ CO ₃ , 溶剂	R		R ¹
序号	催化 剂	催化剂 用量/ mol%	溶剂	R	\mathbf{R}^1	cis/ trans	产率 /%
1	1	2	t-BuOH	$4-ClC_6H_4$	TMS	49/51	86
2	1	2	t-BuOH	$4-MeC_6H_4$	TMS	49/51	88
3	1	20	t-BuOH	$n-C_9H_{19}$	TMS	54/46	83
4	1	20	t-BuOH	Cyclohexyl	TMS	58/42	73
5	21	2	t-BuOH	$4-ClC_6H_4$	TMS	49/51	82
6	21	2	t-BuOH	$4-MeC_6H_4$	TMS	50/50	83
7	23	2	t-BuOH	$4-ClC_6H_4$	Н	55/45	92
8	20	10	<i>i</i> -PrOH	$4-ClC_6H_4$	TMS	—	0
9	22	10	<i>i</i> -PrOH	$4-ClC_6H_4$	TMS	49/51	69

2.2 硒叶立德的环氧化反应

2.2.1 立体选择性的硒叶立德环氧化反应

对于硒叶立德对碳氧双键的加成,最早是在 1974 年由 Krief 等^[33]率先报道. Krief 合成了如下几种有较高 反应活性的硒盐(Scheme 8).

$(CH_3)_3Se^+I^-$	$Ph_2Se^+CH_3I^-$	$Ph_2Se^+CH_2CH_3Br^-$
	Scheme 8	

Krief 等^[33]通过强碱与上述硒盐作用现场产生硒叶 立德,并与醛或酮反应得到了相应的取代环氧乙烷化合 物(Scheme 9).

Scheme 9

然而,在 Krief 之后的很长一段时间中,有关通过 硒叶立德途径合成环氧乙烷的研究鲜有报道^[34]. 2000 年, Watanabe 等^[35]用炔基硒盐与碱(氢氧根负离子)作用 并发生重排的方法现场生成 β-羰基硒叶立德,产生的硒 叶立德立即与醛反应得到环氧乙烷衍生物(Scheme 10), 产物为反式结构.

在最优的条件下,即当醛,炔基硒盐,LiOH, Et₃N 和AgOTf的物质的量比为1:4:6:4:4的条件下,该反应能够以最高 92%的产率得到羰基取代的环氧乙烷(Eq. 10).在该反应中,炔基底物的芳基取代基对反应的产率影响不是很明显,但醛底物上的R取代基却会对该反应的产率及反应速度有较大的影响.当R为吸电子基取代或没有取代的苯环时,反应只需 1.5~12 h,且产率较高,为 55%~92%;而当 R 为烷基时,反应至少需要过夜,且产率也仅为 18%~63%.

银离子的活化作用非常重要,没有银离子存在的条件下,反应除了生成相应的环氧化合物(产率 17%),还可以分离到 Ph₂SeO(产率 17%).结合其它一些实验结果,Watanabe 等^[35]对该反应提出了一个可能的机理(Scheme 11).他们认为,当体系中有银离子的存在时,由于银离子可以活化碳碳叁键,反应按route A进行,氢氧根负离子进攻三键形成中间体 24,中间体 24 在三乙胺的作用下迅速重排,现场产生硒叶立德 25,然后该硒叶立德再进攻醛得到环氧产物 26.当没有银离子的存在时,氢氧根负离子会直接进攻硒原子,得到苯乙炔和硒氧化合物,即route B.

Scheme 11

2.2.2 不对称硒叶立德环氧化反应

第一例通过手性硒叶立德来合成手性的取代环氧 乙烷化合物是由 Metzner 等^[36]在2001 年报道的. 他们合 成了 C₂ 对称性的手性硒化合物 27,并通过相应的硒叶 立德的手性诱导作用以优秀的对映选择性(92%~93% *ee*)合成了手性的双取代的环氧化合物,反应的产率最 高可以达到 97% (Eq. 11).

1	Na	aOH	0 (11)
Se + PhCH ₂ Br + R	CHO t-BuOH	/H ₂ O (<i>V</i> :V = 9:1)	Ph ^w R (Π)
	r.	.t.	
27			28
	产率/%	dr (cis/trans)	ee/% (S,S)
Benzaldehyde	71	1/2	92
4-Tolualdehyde	86	1/1.4	93

在此基础上, Metzner 等^[37]又利用 20 mol%的手性硒 化合物实现了对该反应的催化不对称合成(表 8).

1/1

92

97

表 8	硕醚 27	催化的醛的不对称环氧化反应
10.0		

 Table 8
 Catalytic asymmetric epoxidation of various aldehydes

	NaOH	l	Q	
Se + PhCH ₂ Br + RCHO $\frac{1}{t-Bu}$	ıOH/H ₂ O (\ r.t.	/:V=9:1) Pr	28	
27				
而发	 	dr	ee/%	
目土) +//0	(cis/trans)	(S,S)	
Benzaldehyde	91	1:1	91	
4-Tolualdehyde	97	1:1	92	
2-Naphthaldehyde	97	1:1	92	
4-Chlorobenzaldehyde	97	1:1	76	
4-Trifluoromithylbenzaldehyde	76	1:1	83	
(E)-Cinnamaldehyde	66	1:1	94	
2-Furaldehyde	67	1:1	93	
2-Thiophenecarboxaldehyde	86	1:1	94	

反应产物以反式异构体为主.与相应的硫叶立德相 比^[37],用该硒叶立德反应的活性和诱导效果都明显增 加,但是产物的非对映选择性显著降低.例如苯甲醛的 环氧化反应,在化学计量的条件下,用硒化合物 27 反应, 产物的 de 值为 18%~34%,而用相应的硫叶立德得到的 产物的 de 值为 86%.当使用催化量的手性硒化合物时, 该反应只能得到两种非对映异构体 1:1 的混合物.

2005 年, 黄志真等^[38]从樟脑出发合成了光学纯的 手性有机硒化合物 29a, 29b, 与苄溴作用后分别得到了 相应的硒盐 30a, 30b (Scheme 12).

在碱的作用下, 硒盐 30a, 30b 均可以顺利地与芳香 醛反应, 高产率、高非对映选择性地实现手性环氧化合 物的合成, 反应的对映选择性中等. 相对而言, 增加叶 立德的位阻可以有效地提高反应的对映选择性, 如 30b 的不对称诱导效果明显优于 30a(表 9).

表9 樟脑衍生的手性硒叶立德与醛的不对称环氧化反应 Table 9 Asymmetric epoxidation of various aldehydes with camphor-derived selenonium ylides

30a (or **30b**) + ArCHO + *t*-BuOK
$$\xrightarrow{\text{THF}}_{-40 \, ^{\circ}\text{C}}$$
 $\xrightarrow{\text{H}_{1/2}}_{\text{Ar}}$ $\xrightarrow{\text{O}}_{\text{H}}$

A <i>m</i>	30a			30b		
Aľ	产率/%	<i>de</i> /%	ee/%	产率/%	de/%	ee‰
C ₆ H ₅	78	86	58	85	87	80
$4-FC_6H_4$	83	80	60	82	82	82
$4-ClC_6H_4$	77	81	55	81	91	80
$2-ClC_6H_4$	70	84	37	72	85	70
$4-MeC_6H_4$	80	85	50	86	86	81
$4\text{-}MeOC_6H_4$	71	78	48	70	93	72

3 碲、硒叶立德的氮杂环丙烷化反应

氮杂环丙烷类化合物是最小的含氮杂环化合物.由 于该类化合物分子中含有一个张力很大的三元环,因此 其化学性质主要表现为开环反应^[39],从而应用于合成 众多的含氮化合物.例如,在合成大量生物活性的含氮 化合物如生物碱及与生命直接相关的氨基酸等物质的 过程中,氮杂环丙烷衍生物往往是一种十分有效的合成 中间体^[40].因此有效地合成氮杂环丙烷衍生物已成为 有机化学家们近年来十分关注的课题之一.到目前为 止,文献中已出现了多种氮杂环丙烷化反应是其中很 重要的方法之一.特别是经硫叶立德途径的氮杂环丙烷 化反应,戴立信与候雪龙的研究小组^[41,42]在这方面作了 大量、深入的研究,并取得了很好的结果.但目前对于 碲、硒叶立德合成氮杂环丙烷化反应的研究还不是很成 熟.

硫叶立德与反应活性较低的 N-苯基醛亚胺反应时, 由于存在叶立德的重排反应,并不能得到预期的氮杂环 丙烷衍生物(Scheme 13). 2004 年,唐勇等^[43]利用活性较 高的烯丙基碲盐 1 和 32 与 N-苯基醛亚胺反应,以中等 至良好的产率,最高 99/1 的非对映选择性实现了氮杂环 丙烷的合成,产物以反式构型为主(Eq. 12).相对于碲盐 1,用碲盐 32 得到的产率和非对映选择性都显著下降.

Scheme 12

2-Naphthaldehyde

对于 R²为烷基的底物,由于其活性低,易于发生自 身的重排(Eq. 13).针对这个问题,唐勇等^[43]采用了"一 锅法"的办法,即反应体系中同时加入碲盐 1,*N*-Boc 烷 基亚胺前体 33 和碱,现场分别生成相应的碲叶立德和 亚胺并进行反应,以良好的产率和较高的非对映选择性 得到了相应的氮杂环丙烷产物 34 (Eq. 14).值得一提的 是,尽管使用同样的叶立德,与芳香族亚胺的结果相反, 脂肪族底物主要得到顺式结构的氮杂环丙烷.

2005年,唐勇等^[23]在研究碲叶立德与*α*,β-不饱和亚 胺的过程中发现了一个有趣的现象:当*α*,β-不饱和亚胺 的氮上取代基是苯基时,碲叶立德与该底物发生 1,4-加 成得到取代环丙烷基甲醛化合物.而当氮上取代基是对 甲苯磺酰基和叔丁亚磺酰基时,碲叶立德则与碳氮双键 发生 1,2-加成反应得到多取代的氮杂环丙烷化合物^[23] (Scheme 14).

他们分析认为,对于氮上为苯基取代基的底物,反 应应该是首先发生了叶立德对 α,β-不饱和亚胺的 1,4-加 成,即碲叶立德首先与碳碳双键加成得到取代环丙烷

Scheme 14

化合物,因此若是加大碲叶立德的用量应该能够使过量 的叶立德继续与反应的中间体反应而实现氮杂环丙烷 的合成.经过尝试,他们发现在碱存在下,使用过量 (300~400 mol%)的盐与 α,β-不饱和亚胺反应可以中等 到良好的产率得到环丙烷与氮杂环丙烷的累积双环化 合物 35/35'(表 10).

表 10 碲叶立德与 α , β -不饱和亚胺的环丙烷化反应 **Table 10** Aziridination reaction between telluronium ylide with α , β -unsaturated imines

\mathbf{R}^1	35/35'	产率/%
C ₆ H ₅	13/1	82
$4-ClC_6H_4$	13/1	80
$4-CF_3C_6H_4$	13/1	81
4-MeOC ₆ H ₄	8/1	63
4-MeO ₂ CC ₆ H ₄	15/1	82
$2,4-Cl_2C_6H_3$	13/1	86

之后, 唐勇等^[44]又利用该类烯丙型碲叶立德与光 学活性的叔丁亚磺酰胺, 以高产率和优异的非对映选择 性得到了光学活性的氮杂环丙烷 **37**, 产物以顺式构型 为主(Eq. 15).

芳香族底物和脂肪族底物都可以很好地发生该反 应. 值得一提的是, 体系中的阴离子对反应有很大的影 响. 对于芳香族底物, 由碲盐 1 衍生的碲叶立德能够顺 利与之反应;而对于脂肪族底物的氮杂环丙烷化反应, 则只有由碲盐 36 衍生的碲叶立德可以得到理想的结果. 在有些情况下,添加2倍(以亚胺为1)的Ti(OEt)4,反应 的产率和非对映选择性都有所改善.

酮亚胺也可以很好地与碲盐1发生反应,以优异的 非对映选择性和中等的产率得到反式氮杂环丙烷化产 物 38 (Eq. 16).

通过硒叶立德途径来得到氮杂环丙烷的例子很少. 2004年, Watanabe等^[35]在研究炔基硒盐经碱现场生成硒 叶立德并与醛反应的过程中发现,当向反应体系中添加 6 倍(摩尔比)的 TsNHNa 后, 最终得到取代氮杂环丙烷 (Eq. 17).

对于以上反应的机理,作者认为是在反应的过程中 首先是 TsNHNa 与 ArCHO 作用现场生成了醛亚胺和 1 分子的氢氧根负离子, 然后反应再按照 Scheme 11 中 route A 的过程进行. 即氢氧根负离子进攻活化的碳碳 三键并现场生成硒叶立德, 然后生成的硒叶立德(内盐) 再与现场生成的醛亚胺反应得到相应的氮杂环丙烷化 合物 39.

4 结语

综上所述,近些年来人们对硒、碲叶立德在小环化 方面的研究已经有了很大的发展,特别是硒、碲叶立德 在各种小环化反应中显示出来的良好的非对映选择性 与对映选择性,并且在部分反应中已经较好地实现了催 化. 但相对于硫、膦叶立德, 有关这两种叶立德的反应 的探索还较有限,因此对硒、碲两种叶立德的反应,尤 其是在其它方面的如串联、环化反应等方面的应用,还 有很大的空间值得人们去探索.

References

3

- 1 Wittig, G.; Geissler, G. Justus Liebigs Ann. Chem. 1953, 580, 44.
- 2 For selected reviews, see: (a) Tang, Y.; Ye, S.; Sun, X.-L. Synlett 2005, 2720. (b) Li, A.-H.; Dai, L.-X.; Aggarwal, V. K. Chem. Rev. 1997, 97, 2341. (c) Huang, Y.-Z. Acc. Chem. Res. 1992, 25, 182. (d) Maryanoff, B. E.; Reitz, A. B. Chem. Rev. 1989, 89, 863. (e) Boutagy, J.; Thomas, R. Chem. Rev. 1974, 74, 87. For selected examples, see: (a) Li, C.-Y.; Wang, X.-B.; Sun, X.-L.; Tang, Y.; Zheng, Z.-C.; Xu, Z.-H.; Zhou, Y.-G.; Dai, L.-X. J. Am. Chem. Soc. 2007, 129, 1494. (b) Li, C.-Y.; Zhu, B.-H.; Ye, L.-W.; Jing, Q.; Sun, X.-L.; Tang, Y.; Shen, Q. Tetrahedron 2007, 63, 8046. (c) Cao, P.; Li, C.-Y.; Kang, Y.-B.; Xie, Z.; Sun, X.-L.; Tang, Y. J. Org. Chem. 2007, 72, 6628. (d) Li, C.-Y.; Sun, X.-L.; Jing, Q.; Tang, Y. Chem. Commun. 2006, 2980. (e) Li, K.; Ran, L.; Yu, Y.-H.; Tang, Y. J. Org. Chem. 2004, 69.3986. (f) Lee, M.-L.; Chen, Y.; Zhang, X. P. Organometallics 2003, 22, 4905. (g) Aggarwal, V. K.; Fulton, J. R.; Sheldon, C. G.; de Vicente, J. J. Am. Chem. Soc. 2003, 125, 6034. (h) Santos, A. M.; Romao, C. C.; Kuhn, F. E. J. Am. Chem. Soc. 2003, 125, 2414. (i) Balema, V. P.; Wiench, J. W.; Pruski, M.; Pecharsky, V. K. J. Am. Chem. Soc. 2002, 124, 6244. (j) Mirafzal, G. A.; Cheng, G.; Woo, L. K. J. Am. Chem. Soc. 2002, 124, 176. (k) Huang, Z.-Z.; Ye, S.; Xia, W.; Yu, Y.-H.; Tang, Y. J. Org. Chem. 2002, 67, 3096. (l) Lebel, H.; Paquet, V. Org. Lett. 2002, 4, 1671. (m) Harcken, C.; Martin, S. F. Org. Lett. 2001, 3, 3591. (n) Huang, Z.-Z.; Ye, S.; Xia, W.; Tang, Y. Chem. Commun. 2001, 1384. 4 (a) Lebel, H.; Marcoux, J.-F.; Molinaro, C.; Charette, A. B. Chem. Rev. 2003, 103, 977. (b) Müller, P.; Fruit, C. Chem. Rev. 2003, 103, 2905.
- Aggarwal, V. K.; Winn, C. L. Acc. Chem. Res. 2004, 37, 5 611
- (a) Dai, L.-X.; Hou, X.-L.; Zhou, Y.-G. Pure Appl. Chem. 6 1999, 71, 369.

(b) Robiette, R. J. Org. Chem. 2006, 71, 2726.

(a) Sweeney, J. B.; Tavassoli, A.; Workman, J. A. Tetrahe-7 dron 2006, 62, 11506. (b) Ma, M.; Peng, L.; Li, C.; Zhang, X.; Wang, J. J. Am.

Chem. Soc. 2005, 127, 15016.

319

(c) Blid, J.; Panknin, O.; Somfai, P. J. Am. Chem. Soc. 2005, 127, 9352.

- 8 Murphy, G. K.; West, F. G. Org. Lett. 2006, 8, 4359.
- 9 (a) Ye, L.-W.; Zhou, J.; Tang, Y. Chem. Soc. Rev. 2008, 37, 1140.

(b) Wang, Q.-G.; Deng, X.-M.; Zhu, B.-H.; Ye, L.-W.; Sun, X.-L.; Li, C.-Y.; Zhu, C.-Y.; Shen, Q.; Tang, Y. J. Am. Chem. Soc. **2008**, *130*, 5408.

(c) Zhu, C.-Y.; Deng, X.-M.; Sun, X.-L.; Zheng, J.-C.; Tang, Y. *Chem. Commun.* **2008**, 738.

(d) Janardanan, D.; Sunoj, R. B. J. Org. Chem. 2007, 72, 331.

(e) Ye, L.-W.; Sun, X.-L.; Wang, Q.-G.; Tang, Y. Angew. Chem., Int. Ed. 2007, 46, 5951.

(f) Lu, X.; Lu, Z.; Zhang, X. Tetrahedron 2006, 62, 457.

(g) Kokotos, C. G; Aggarwal, V. K. Chem. Commun. 2006, 2156.

(h) Ye, L.-W.; Sun, X.-L.; Zhu, C.-Y.; Tang, Y. Org. Lett. **2006**, *8*, 3853.

(i) Unthank, M. G.; Hussain, N.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2006, 45, 7066.

(j) Du, Y.; Feng, J.; Lu, X. Org. Lett. 2005, 7, 1987.

(k) Du, Y.; Lu, X.; Zhang, C. Angew. Chem., Int. Ed. 2003, 42, 1035.

- Huang, Y.-Z.; Tang, Y.; Zhou, Z.-L. *Tetrahedron* 1998, 54, 1667.
- Wong, H. N. C.; Hon, M.-Y.; Tse, C.-W.; Yip, Y.-C.; Tanko, J.; Hudicky, T. *Chem. Rev.* **1989**, *89*, 165.
- 12 (a) McMorris, T. C.; Staake, M. D.; Kelner, M. J. J. Org. Chem. 2004, 69, 619.

(b) Nicolaou, K. C.; Sasmal, P. K.; Rassias, G.; Reddy, M. V.; Altmann, K.-H.; Wartmenn, M.; O'Brate, A.; Giannaka-kou, P. *Angew. Chem., Int. Ed.* 2003, *42*, 3515.
(c) Nicolaou, K. C.; Petasis, N. A.; Seitz, S. P. *J. Chem. Soc., Chem. Commun.* 1981, 1195.

- 13 Tang, Y.; Ye, S.; Huang, Y.-Z. *Heteroat. Chem.* **2002**, *13*, 463.
- 14 Verhé, R.; de Kimpe, N. *The Chemistry of the Cyclopropyl Group*, Eds.: Patai, S.; Rappoport, Z., Wiley & Sons, New York, **1987**, Chapter 9.

15 (a) Ye, L.-W.; Sun, X.-L.; Li, C.-Y.; Tang, Y. J. Org. Chem.
2007, 72, 1335.

(b) Deng, X.-M.; Cai, P.; Ye, S.; Sun, X.-L.; Liao, W.-W.;
Li, K.; Tang, Y.; Wu, Y.-D.; Dai, L.-X. J. Am. Chem. Soc.
2006, 128, 9730.

(c) Ye, S.; Huang, Z.-Z.; Xia, C.-A.; Tang, Y.; Dai, L.-X. *J. Am. Chem. Soc.* **2002**, *124*, 2432.

(a) Aggarwal, V. K.; Grange, E. *Chem. Eur. J.* 2006, 568.
(b) Fulton, J. R.; Aggarwal, V. K.; de Vicente, J. *Eur. J. Org. Chem.* 2005, 1479.

(c) Midura, W. H.; Krysiak, J. A.; Cypryk, M.; Mikolajczyk,
M.; Wieczorek, M. W.; Filipczak, A. D. *Eur. J. Org. Chem.*2005, 653

(d) Aggarwal, V. K.; Smith, H. W.; Hynd, G.; Jones, R. V.

H.; Fieldhouse, R.; Spey, S. E. J. Chem. Soc., Perkin Trans. *1* 2000, 3267.

- 17 Huang, Y.-Z.; Tang, Y.; Zhou, Z.-L.; Huang, J.-L. J. Chem. Soc., Chem. Commun. 1993, 7.
- 18 Tang, Y.; Huang, Y.-Z.; Dai, L.-X.; Chi, Z.-F.; Shi, L.-P. J. Org. Chem. 1996, 61, 5762.
- 19 Ye, S.; Yuan, L.; Huang, Z.-Z.; Tang, Y.; Dai, L.-X. J. Org. Chem. 2000, 65, 6257.
- 20 (a) Hanessian, S.; Andreotti, D.; Gomtsyan, A. J. Am. Chem. Soc. 1995, 117, 10393.

(b) Salaün, J. Chem. Rev. 1989, 89, 1247.

- 21 Ye, S.; Tang, Y.; Dai, L.-X. J. Org. Chem. 2001, 66, 5717.
- 22 Liao, W.-W.; Li, K.; Tang, Y. J. Am. Chem. Soc. 2003, 125, 13030.
- 23 Zheng, J.-C.; Liao, W.-W.; Tang, Y.; Sun, X.-L. J. Am. Chem. Soc. 2005, 127, 12222.
- 24 Huang, Y.-Z.; Tang, Y.; Zhou, Z.-L.; Xia, W.; Shi, L.-P. J. Chem. Soc., Perkin Trans. 1 1994, 893.
- (a) Hudlicky, T.; Reed, J. W. In *Comprehensive Organic Synthesis*, Vol. 5, Eds.: Trost, B. M.; Fleming, I., Pergamon, Oxford, **1991**, p. 899.
 (b) Lautens, M.; Ouellet, S. G.; Rappel, S. *Angew. Chem.*, *Int. Ed.* **2000**, *39*, 4079.
 (c) Salomon, R. G.; Basu, B.; Roy, S.; Sachinvala, N. D. J. *Am. Chem. Soc.* **1991**, *113*, 3096.
 (d) Whang, K.; Cooke, R. J.; Okay, G.; Cha, J. K. J. Am. *Chem. Soc.* **1990**, *112*, 8985.
- 26 Johnson, A. W.; LaCount, R. B. J. Am. Chem. Soc. 1961, 83, 417.
- 27 Osuka, A.; Suzuki, H. Tetrahedron Lett. 1983, 24, 5109
- (a) Zhou, Z.-L.; Huang, Y.-Z.; Shi, L.-L. *Tetrahedron Lett.* 1992, *33*, 5827.
 (b) Zhou, Z.-L.; Huang, Y.-Z.; Shi, L.-L. *J. Chem. Soc.*, *Chem. Commun.* 1992, 986.
 (c) Zhou, Z.-L.; Sun, Y.-S.; Shi, L.-L.; Huang, Y.-Z. *J. Chem. Soc.*, *Chem. Commun.* 1990, 1439.
- 29 Shi, L.-L.; Zhou, Z.-L.; Huang, Y.-Z. Tetrahedron Lett. 1990, 31, 4173.
- 30 Qu, W.-H.; Huang, Z.-Z. Synthesis 2005, 2857.
- 31 Zhou, Z.-L.; Shi, L.-L.; Huang, Y.-Z. Tetrahedron Lett. 1990, 31, 7657.
- 32 Li, K.; Huang, Z.-Z.; Tang, Y. *Tetrahedron Lett.* **2003**, *44*, 4137.
- 33 Dumont, W.; Bayet, P.; Krief, A. Angew. Chem., Int. Ed. 1974, 13, 274.
- 34 Takaki, K.; Yasumura, M.; Negoro, K. Angew. Chem., Int. Ed. 1981, 20, 671.
- 35 Watanabe, S.; Asaka, S.; Kataoka, T. *Tetrahedron Lett.* 2004, 45, 7459.
- 36 Takada, H.; Metzner, P.; Philouze, C. Chem. Commun. 2001, 2350.
- 37 (a) Julienne, K.; Metzner, P.; Henryon, V. J. Chem. Soc., Perkin Trans. 1 1999, 731.

(b) Julienne, K.; Metzner, P.; Henryon, V.; Greiner, A. J.

Org. Chem. 1998, 63, 4532.

- 38 Li, X.-L.; Wang, Y.; Huang, Z.-Z. Aust. J. Chem. 2005, 58, 749.
- 39 Stamm, H. J. Prakt. Chem. 1999, 341, 319.
- 40 (a) Osborn, H. M. I.; Sweeney, J. *Tetrahedron: Asymmetry* **1997**, *8*, 1698.

(b) Schkeryantz, J. M.; Danishefsky, S. J. J. Am. Chem. Soc. **1995**, *117*, 4722.

(c) Davis, F. A.; Reddy, G. V.; Liu, H. J. Am. Chem. Soc. **1995**, 117, 3651.

(d) Tanner, D. Angew. Chem., Int. Ed. Engl. 1994, 33, 599.

41 (a) Li, A.-H.; Dai, L.-X.; Hou, X.-L.; Chen, M.-B. J. Org. *Chem.* **1996**, *61*, 4641.

(b) Li, A.-H.; Dai, L.-X.; Hou, X.-L. J. Chem. Soc., Perkin

Trans. 1 1996, 867.

(c) Li, A.-H.; Dai, L.-X.; Hou, X.-L. Chem. Commum. 1996, 491.

42 (a) Yang, X.-F.; Zhang, M.-J.; Hou, X.-L.; Dai, L.-X. *J. Org. Chem.* 2002, *67*, 8097.
(b) Hou, X.-L.; Yang, X.-F.; Dai, L.-X.; Chen, X.-F. *Chem.*

Commun. **1998**, 747. (c) Li, A.-H.; Zhou, Y.-G.; Dai, L.-X.; Hou, X.-L.; Xia, L.-J.;

Liu, L. Angew. Chem., Int. Ed. 1997, 36, 1317.

- 43 Liao, W.-W.; Deng, X.-M.; Tang, Y. Chem. Commun. 2004, 1516.
- 44 Zheng, J.-C.; Liao, W.-W.; Sun, X.-X.; Sun, X.-L.; Tang, Y.; Dai, L.-X.; Deng, J.-G. Org. Lett. 2005, 7, 5789.

(Y0804181 Cheng, B.)