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Abstract: A highly enantioselective synthesis of various chiral
heterobicyclic molecules including spiroaminals and fused
bicyclic acetals has been developed via a chiral copper
catalyzed cyclopropanation-rearrangement (CP-RA)
approach under mild reaction conditions. Remarkably, the
asymmetric CP-RA for exocyclic vinyl substrates without
a pro-stereogenic carbon at the b-position has been realized for
the first time and a broad substrate scope with excellent results
(33 examples; 34–99% yields; > 95/5 dr and 91–99% ee) has
been achieved. An application of a successive enantioselective
CP-RA approach was also described, providing a concise
access to complex chiral heteropolycycles.

Chiral heterobicyclic molecules, such as spiroketals, spiroa-
minals, bicyclic acetals and their analogues, are found as the
prevalent substructures occurring frequently in a number of
biologically active compounds,[1a,c–f] privileged chiral
ligands[1g–j] as well as important frameworks in functional
materials.[1b] For examples, the marine natural products
Xyloketal B that exhibited potential application for the
treatment of Parkinson�s disease[1f] and Azaspiracid-1 was
found as a new potent biotoxin[1a,c–d] (Figure 1). Since the first
highly enantioselective catalytic intramolecular spiroacetali-
zation reactions of hydroxyenol ether as well as bis(2-
hydroxyarylidene) ketones have been realized by List
et al.[2a] and Ding et al. independently.[2b] in 2012, many
effective methods have been developed in the construction
of chiral spiroketals.[2] Compared with the documented
achievements towards spiroketals, however, few direct meth-
ods are available to elaborate chiral spiroaminals to date.[3] In

2016, Feng and co-workers developed an elegant AuI/NiII

bimetallic relay asymmetric catalysis to provide both the
chiral spiroketals and spiroaminals based on a dihydropyran
subunit via a formal [4+2] cycloaddition.[2f] Kang and co-
workers reported an efficient AuI/RhIII bimetallic relay
chemistry to furnish these structures in a similar strategy.[2h]

Remarkably, although spiroaminals containing an oxygenated
five membered ring widely appear in a good number of
biologically active molecules, to the best of our knowledge,
these attractive motifs have barely been achieved in a catalytic
enantioselective manner. Meanwhile, asymmetric synthesis of
chiral bicyclic acetals has always been an area of interest, but
known methods that are both general and efficient are still in
scarce.[4,5] The increasing demand on the diversity-oriented
asymmetric synthesis of chiral heterobicyclic molecules
appeals to chemists developing new versatile method to
build diverse types of such molecules.

a-Diazoketones are considered as useful building blocks
in organic synthesis and have received a steadily interest due
to its distinct reactivity.[6] Significant progresses in catalytic
asymmetric reaction with a-diazoketones have been made,
such as asymmetric X-H insertion reactions,[6b,c,e] asymmetric
cyclopropanations,[6a] tandem reactions[6d,f] and others.[6g]

Pioneered in 1990s, the CP-RA (cyclopropanation-rearrange-
ment) strategy has been developed to synthesize racemic
bicyclic acetals with diazo-1,3-dione and dihydrofuran in
a rhodium carbene chemistry.[7] Since then, studies on the
asymmetric version of this strategy have been explored and
proved to be difficult to achieve excellent enantioselectivity
for the direct method (Scheme 1a).[8] In 2005, M�ller and co-

Figure 1. The spiroketal and bicyclic acetal subunits in natural prod-
ucts.
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workers reported a step by step solution that a stable chiral
cyclopropane bearing a silyl enol ether subunit was firstly
generated, followed by the rearrangement step triggered by
adding TBAF (tetrabutylammonium fluoride) to form the
chiral bicyclic acetal, in which a pro-stereogenic carbon at the
b-position of the enol ether substrate is quite essential
(Scheme 1a).[10] Although it could achieve excellent ee
values, only limited substrates are reported. The direct
synthesis of chiral bicyclic acetals employing CP-RA strategy
has not been realized in high efficiency. In fact, there are two
possible C�C bond cleavage patterns in the ring opening of
donor-acceptor cyclopropanes,[9] including forming an open
zwitterion intermediate as pattern A, as well as undergoing
a SN2 nucleophilic concerted substitution as pattern B. In the
case of the asymmetric CP-RA for exocyclic vinyl substrates
without a pro-stereogenic carbon at the b-position, it is even
harder to control the enantioselectivity, which has not been
realized to date, due to the fact that the in situ generated
chiral cyclopropane is likely to suffer from complete race-
mization in the RA step through a zwitterion intermediate
(Pattern A) as shown in Scheme 1.[10a] Herein, we report
a copper catalyzed direct asymmetric CP-RA reaction[11] of
exocyclic vinyl substrates, which could also be extended to
internal cyclic olefin substrates, providing divergent synthesis
of chiral heterobicycles including both spiroaminals and fused
bicyclic acetals in high yields with excellent levels of
enantioselectivity.

Initially, the exocyclic N-sulfonyl enamide 2a without pro-
stereogenic carbon at the b-position was employed as starting

material. By employing 10 mol% of chiral copper(II) as
catalyst, a-aryl-a-diazoketone 1a and 2a were reacted at
room temperature (Table 1). With the catalyst Cu(OTf)2 and
chiral phenyl-BOX ligand L1, very poor enantioselectivity
was obtained (Table 1, entry 1). When indanyl-BOX ligand
L2 was employed, both the yield and the enantioselectivity
were disappointed (Table 1, entry 2). Unexpectedly, with
indanyl-TOX ligand L3, [12] 66 % yield and 65 % ee was
obtained (Table 1, entry 3). Next, through a range of copper
catalyst, [Cu(CH3CN)4]PF6 emerged as the optimal catalyst,
providing the desired product 4 a in 73% yield with 79 % ee
(Table 1, entries 4–5). The enantioselectivity slightly
improved when the solvent was changed from DCM
(dichloromethane) to DCE (1,2-dichloroethane) (Table 1,
entry 6). Chiral ligands including mono-side-armed SaBOX
ligand[13] L4 and L5 as well as the bi-side-armed SaBOX
ligands[14] L6 and L7 were studied, which resulted in a range of
74–86% ee (Table 1, entry 7–10). To our delight, the best
result was achieved in 99% yield with 91 % ee by using
a newly-developed unsymmetrical bi-side-armed SaBOX
ligands L8 (Table 1, entry 11). Interestingly, in the case of
N-sulfonyl 1,2,3,4-tetrahydropyridine 3a with L8, [Cu-
(CH3CN)4]PF6 in DCE only lead to 46% of cyclopropanation
product[15] without any expected bicyclic N,O-acetals, but

Scheme 1. CP-RA approaches for the asymmetric synthesis of heterobi-
cycles.

Table 1: Optimization of the reaction conditions.

Entry[a] Copper L Solvent Yield [%][b] ee [%][c]

1 Cu(OTf)2 L1 DCM 53 2
2 Cu(OTf)2 L2 DCM 38 53
3 Cu(OTf)2 L3 DCM 66 65
4 CuOTf·(toluene)0.5 L3 DCM 99 71
5 [Cu(CH3CN)4]PF6 L3 DCM 73 79
6 [Cu(CH3CN)4]PF6 L3 DCE 83 81
7 [Cu(CH3CN)4]PF6 L4 DCE 83 72
8 [Cu(CH3CN)4]PF6 L5 DCE 73 86
9 [Cu(CH3CN)4]PF6 L6 DCE 99 84

10 [Cu(CH3CN)4]PF6 L7 DCE 68 85
11 [Cu(CH3CN)4]PF6 L8 DCE 99 91
12 [Cu(CH3CN)4]PF6 L8 DCE 0[e] –
13[d] Cu(OTf)2 L8 DCM 51[e] 98
14[d] Cu(OTf)2 L7 DCM 78[e] 99

[a] Reaction conditions: copper (0.01 mmol), L (0.012 mmol), 1a
(0.1 mmol); 2a (0.2 mmol), 3 � MS (50 mg) in solvent (2.5 mL) at 28 8C,
under Ar atmosphere. [b] 1H NMR yield of 4a. [c] Determined by Chiral
HPLC. [d] With 1a (0.2 mmol) and 3a (0.1 mmol). [e] Isolated yield of
5a.
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Cu(OTf)2 in DCM could result in the desired 5 a in 51 % yield
with 98% ee (Table 1, entries 12–13). Further investigation on
the chiral ligand effect showed that, with L7 as ligand, both
the yield and the enantioselectivity could be further
improved. The best result for 5a was 78% yield with 99%
ee (Table 1, entry 14).

Under the optimized conditions (Table 1, entry 11), the
substrate scope of spiroaminals was explored (Scheme 2). a-
Diazoketones bearing different carbonyl substituents, such as
acetyl, propionyl and isopropyl acyl groups were suitable
reaction candidates, delivering the corresponding products
4a–c in 53–99% yields with 91–96 % ee. Furthermore, a-
diazoketone 1d with the long chain phenyl substituent could
also work well in this reaction (99 % yield, 91 % ee).[16]

Remarkably, cyclopropyl group, which is often employed in
the design of drug molecules owing to its superiorities over
linear and cyclic aliphatic hydrocarbons in drug efficacy and
metabolic stability,[17] could be introduced to give correspond-
ing spiroaminals 4e–h in 81–94% yields with 94–96% ee. For
example, a-diazoketone 1 f, containing the crucial frame of
the antiplatelet durg Prasugrel, proceeded smoothly to
provide 4 f in 94% yield with 94% ee. Meanwhile, this
reaction could tolerate different exocyclic N-sulfonyl enam-
ides, such as 2 i with bulky substituents, and 2 j with six-
membered ring, affording the corresponding spiroaminals 4 i
and 4j with excellent enantioselectivity.

Subsequently, we explored the substrate scope of the
fused bicyclic N,O-acetals (Scheme 3). A series of fused
bicyclic N,O-acetals (5a–c) containing five- to seven-mem-
bered ring systems could be obtained with excellent enantio-

selectivities (98–99% ee). Sterically hindered cyclic N-sulfo-
nyl enamides (3d) also could deliver 99 % ee.[16] Importantly,
a-diazoketones with an aryl or a heterocyclic aryl subunit
were found as suitable substrates, affording 5e and 5 f in good
yields with 98–99 % ee. Cinnamyl group substituted a-
diazoketone 3g was tolerated in the current catalytic system
to give the desired product 5g with excellent ee value.
Moreover, lactam substrates, such as 3 h and 3 i could also
work well, providing the corresponding chiral heterobicycles
5h and 5 i in moderate yields with 96–97 % ee.

The current catalytic system was applicable in a wide
range that a series of cyclic enol ethers, which proved very
good reaction candidates (Scheme 4). Fused bicyclic acetals
(7a) were obtained in 84 % yield with 93% ee under the
optimized reaction conditions (Table 1, entry 14).[18] Enol
ethers with bulky substituents were also employed, giving
excellent ees. For example, 2,2-dimethyl and 2,2-diphenyl
substituted products 7b–e were obtained in 78–85% yields
with 95–97 % ee. Enol ether with an ester group was found as
suitable substrate, and delivered 7 f in 90 % yield with 73/17 dr
and excellent ee values. Products 7g–i bearing a spiro-
quaternary carbon moiety were also successfully built in
good to high yields (75–91%) with excellent ee values (95–
97% ee). It was worth to mention that substrates bearing
benzyl or alkyl substituents at 2-position of the cyclic enol
ethers could result in the fused bicyclic ketals 7j–m with
a quaternary carbon in good yields with excellent enantiose-
lectivity (52–60% yield, 98–99 % ee). Furthermore, when 4H-
chromene was employed as the substrate, the aromatic
bicyclic acetal product 7n was obtained in 53 % yield with
99% ee.Scheme 2. Substrate scope of the spiroaminal products.

Scheme 3. Substrate scope of the fused bicyclic N,O-acetals.
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The current study showed that the exocyclic vinyl
sulfamide substrates without a pro-stereogenic carbon at the
b-position could achieve excellent enantioselectivity, which is
different from the previous report on the CP-RA process of
vinyl ethers.[10] To understand the insights, we initially tried to
obtain both racemic and optically active intermediate 8 with
and without L8 but failed. Then several control experiments
were carried out (Scheme 5). Further study showed rac-8
could be prepared in situ as a main product in an NMR tube
with 1.2 mol% of Rh2(esp)2 via cyclopropanation of exocyclic
N-sulfonyl enamide 2a with 1 b (Scheme 5b),[19] which was
unstable and would rearrange to the spiroaminal. The similar
results were observed in the enantioselective reaction of 2a
and 1 b in the presence of the [Cu(CH3CN)4]PF6/L8 by in situ
1H NMR monitoring in CD2Cl2 at 25 8C, in which the RA step
was found faster than the one in the racemic version and trace
amount of 8 was observed accompany with the formation of
the RA product 4h. (Scheme 5a).[19] These experiments
suggests the exocyclic vinyl sulfamide substrates achieved
excellent enantio-induction via a CP-RA process. Next, we
turn to investigate the step to control the enantioselectivity.
When the rac-8 was treated with 1.0 equiv of chiral copper
catalyst at �40 8C, 79% yield of 4h was obtained with 0% ee
(Scheme 5b), suggesting that the rearrangement step might
undergo through Pattern B (Scheme 1).[20] As 5d could be
obtained in 65 % yield with 99 % ee from the reaction of 1a
with 3d in the presence of Cu(OTf)2/L7 as catalyst, we also

tried to isolate the corresponding intermediate 9 but failed
(Scheme 5c). To our delight, when [Cu(CH3CN)4]PF6 was
employed instead of Cu(OTf)2, the intermediate aminocyclo-
propane[21] 9 could be isolated in 75% yield with 99% ee.
Noticeably, the chiral aminocyclopropane 9 could be further
transformed into 5 d in the presence of a racemic copper
catalyst without loss of stereochemical purity (Scheme 5d,
98% ee). These experiments suggest that the enantioselec-
tivity in both cases is likely to be determined in the cyclo-
propanation step.

Interestingly, the CP-RA approach could be applied
successfully to the construction of a complex chiral hetero-
polycycle in a successive manner with a nitrogenous hetero-
cyclic substrate bearing both internal olefin and exo-olefin
moieties. The corresponding product 11 was obtained in 48%
yield with 90/10 dr and 99% ee (Scheme 6).

In summary, we have successfully developed an asym-
metric copper-catalyzed cyclization reaction of a-diazoke-
tones with various enamides/enol ethers via a cyclopropana-
tion-rearrangement (CP-RA) approach. Importantly, both
exocyclic vinyl substrates and internal cyclic olefin substrates,
no matter with or without a pro-stereogenic carbon at the b-
position, proved very efficient for the non-stepwise asym-
metric CP-RA reaction for the first time (to our knowledge).
Thus, this method has extremely broad substrate scopes to
provide a new access to diverse chiral spiroaminals (10

Scheme 4. Substrate scope of the fused bicyclic acetals.

Scheme 5. Control experiments.

Scheme 6. An application of successive CP-RA approaches to chiral
heteropolycycles.
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examples, in up to 99 % yield with up to 96% ee) and fused
bicyclic acetals (23 examples, in up to 91% yield with up to
99% ee). 1H NMR experiment confirmed that the exocyclic
vinyl sulfamide substrates achieved excellent enantio-induc-
tion via a CP-RA process. The CP-RA approach could also be
applied to the synthesis of a fused bicyclic acetal with
a spiroaminal subunit in a successive manner with excellent
enantioselectivity (99% ee), which provided a concise access
to complex chiral heteropolycycles. Further studies on the
application of the enantioselective CP-RA approach are
underway.
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